我的数据格式如下:
X Raw data
1 %100,02231, ,001,013, -00007,000,999 &IC ,001,013 >vs ,0652 ?2 ,2 ,00007 .vss ,0655 ?2 ,2 ,00007 .mdb ,0700 ?2 ,2 ,00007 .arn ,0704 ?1 ,1
2 %100,02231, ,001,023, -00008,000,999 &IC ,001,023 >vs ,0652 ?3 ,3 ,00008 .vss ,0655 ?2 ,2 ,00008 .mdb ,0700 ?2 ,2 ,00008 .arn ,0704 ?1 ,1 ,00008 +gs ,0713,0714 ?2 ,2 ,00008 .bzl ,0719 ?2 ,2 ,00008 .krg ,0724 ?1 ,1
等等
我想将此原始数据转换为漂亮的表格形状。我知道如何使用tidyr
的独立功能来分隔某些事物,例如:
DFx <- separate(DF, Raw.data, into="Starting station", sep=">", extra="warn", fill = "right")
例如, >
表示起始站。 &
将指示火车类型。在上面的示例中,它将起始站点与其余站点分开。我正在寻找将这个大数据集(仅对部分行进行采样)放入漂亮表的最佳方法。我不怕一点体力劳动,只是在寻找可以使我朝正确方向前进的任何指针。谢谢。
我使用的timetbls.dat文件可以从以下位置下载: here
有关数据格式的文档(不幸的是,使用荷兰语,但可能会有所帮助,因为您仍然可以看到数据的轮廓),请参阅第9 / 28-11 / 28页:here
答案 0 :(得分:2)
记录文档!
首先让我们省去很多代码(滚动过去以获取列表格式的一些注释和注释):
# Reference: Section 5 of IFF Standaard
parse_iff_timetable <- function(path) {
suppressPackageStartupMessages({
require("stringi", quietly = TRUE, warn.conflicts = FALSE)
require("tidyverse", quietly = TRUE, warn.conflicts = FALSE)
})
lines <- stri_read_lines(path.expand(path)) # read in all the lines
starts <- which(grepl("^#", lines)) # find all the records
ends <- c(starts[-1], length(lines))
pb <- progress_estimated(length(starts)) # this took 3m on my system so progress bars might be handy
map2(starts, ends, ~{
pb$tick()$print()
rec_num <- ""
rec <- list(service = list(), stop = list())
index <- 0
for (l in lines[.x:.y]) { # iterate over the record
if (stri_sub(l, 1, 1) == "#") { # (ritnummer)
stri_sub(l, 1, 1) <- ""
rec_num <- l
} else if (stri_sub(l, 1, 1) == "%") { # (vervoerder)
stri_sub(l, 1, 1) <- ""
tmp <- stri_trim_both(stri_split_fixed(l, ",")[[1]])
set_names(
tmp, c("company_number", "service_number", "variant", "first_stop",
"last_stop", "service_name")
) -> tmp
rec$service <- append(rec$service, list(as.list(tmp)))
} else if (stri_sub(l, 1, 1) == "-") { # (voetnoot)
stri_sub(l, 1, 1) <- ""
tmp <- stri_trim_both(stri_split_fixed(l, ",")[[1]])
tmp <- set_names(tmp, c("footnote", "first_stop", "last_stop"))
tmp <- as.list(tmp)
rec$validity <- tmp
} else if (stri_sub(l, 1, 1) == "&") { # (vervoerssort)
stri_sub(l, 1, 1) <- ""
tmp <- stri_trim_both(stri_split_fixed(l, ",")[[1]])
tmp <- set_names(tmp, c("mode", "first_stop", "last_stop"))
tmp <- as.list(tmp)
rec$transport <- tmp
} else if (stri_sub(l, 1, 1) == "*") { # (attribuut)
stri_sub(l, 1, 1) <- ""
tmp <- stri_trim_both(stri_split_fixed(l, ",")[[1]])
tmp <- set_names(tmp, c("code", "first_stop", "last_stop", "unknown"))
tmp <- as.list(tmp)
rec$attribute <- tmp
} else if (stri_sub(l, 1, 1) == ">") { # (begin van de rit)
index <- index + 1
stri_sub(l, 1, 1) <- ""
tmp <- stri_trim_both(stri_split_fixed(l, ",")[[1]])
tmp <- set_names(tmp, c("station_short", "departure_time"))
tmp <- as.list(tmp)
tmp$index <- index
tmp$arrival_time <- NA_character_
rec$stop <- list(tmp)
} else if (stri_sub(l, 1, 1) == ".") { # (korte stop)
index <- index + 1
stri_sub(l, 1, 1) <- ""
tmp <- stri_trim_both(stri_split_fixed(l, ",")[[1]])
tmp <- set_names(tmp, c("station_short", "departure_time"))
tmp <- as.list(tmp)
tmp$index <- index
tmp$arrival_time <- tmp$departure_time
rec$stop <- append(rec$stop, list(tmp))
} else if (stri_sub(l, 1, 1) == ";") { # (passeer station)
index <- index + 1
stri_sub(l, 1, 1) <- ""
tmp <- stri_trim_both(stri_split_fixed(l, ",")[[1]])
tmp <- set_names(tmp, c("station_short"))
tmp <- as.list(tmp)
tmp$index <- index
tmp$arrival_time <- NA_character_
tmp$departure_time <- NA_character_
rec$stop <- append(rec$stop, list(tmp))
} else if (stri_sub(l, 1, 1) == "+") { # (a/v stop)
index <- index + 1
stri_sub(l, 1, 1) <- ""
tmp <- stri_trim_both(stri_split_fixed(l, ",")[[1]])
tmp <- set_names(tmp, c("station_short", "arrival_time", "departure_time"))
tmp <- as.list(tmp)
tmp$index <- index
rec$stop <- append(rec$stop, list(tmp))
} else if (stri_sub(l, 1, 1) == "?") { # (spoor)
stri_sub(l, 1, 1) <- ""
tmp <- stri_trim_both(stri_split_fixed(l, ",")[[1]])
tmp <- set_names(tmp, c("arrival_platform", "departure_platform", "footnote"))
tmp <- as.list(tmp)
tmp$index <- index
if (stri_sub(tmp$arrival_platform, 1,1) != stri_sub(tmp$departure_platform, 1,1)) {
message(
sprintf(
"\nNOTE: Difference in arrival/departure platforms: %s/%s (Record: #%s)",
tmp$arrival_platform, tmp$departure_platform, rec_num
)
)
}
rec$platform <- tmp
} else if (stri_sub(l, 1, 1) == "<") { # (eind van de rit)
index <- index + 1
stri_sub(l, 1, 1) <- ""
tmp <- stri_trim_both(stri_split_fixed(l, ",")[[1]])
tmp <- set_names(tmp, c("station_short", "arrival_time"))
tmp <- as.list(tmp)
tmp$index <- index
tmp$departure_time <- NA_character_
rec$stop <- append(rec$stop, list(tmp))
}
}
rec
})
}
我在^^中使用stringi
,因为该标准很可能在许多语言环境中使用,stringi
应该为我们注意编码规范化。
如果我在13MB dat文件上运行该文件:
ns_tbl <- parse_iff_timetable("~/data/ns-latest/timetbls.dat")
大约需要3m(按字符快速操作不是R的强项之一),并且在其中有一个注意事项,其中大约有一条记录具有不同的到达/离开平台。 Rcpp版本的速度可能会快得多。由于顺序并不重要,因此furrr
或pbapply
包也可以通过对代码进行少量更改而将时间减少到<1m。
基本习惯是对每条“记录”逐行进行处理,并建立一个大型的嵌套列表结构(无论如何,这都不是“固定的”数据)。
让我们浏览一个记录(第一个):
str(ns_tbl[1], 2)
## List of 1
## $ :List of 5
## ..$ service :List of 2
## ..$ stop :List of 34
## ..$ validity :List of 3
## ..$ transport:List of 3
## ..$ platform :List of 4
stop
元素很大,所以让我们先看看其他元素:
str(ns_tbl[[1]][-2], 3)
## List of 4
## $ service :List of 2
## ..$ :List of 6
## .. ..$ company_number: chr "100"
## .. ..$ service_number: chr "11410"
## .. ..$ variant : chr ""
## .. ..$ first_stop : chr "001"
## .. ..$ last_stop : chr "002"
## .. ..$ service_name : chr "Nachtnettrein"
## ..$ :List of 6
## .. ..$ company_number: chr "100"
## .. ..$ service_number: chr "01412"
## .. ..$ variant : chr ""
## .. ..$ first_stop : chr "002"
## .. ..$ last_stop : chr "008"
## .. ..$ service_name : chr "Nachtnettrein"
## $ validity :List of 3
## ..$ footnote : chr "00002"
## ..$ first_stop: chr "000"
## ..$ last_stop : chr "999"
## $ transport:List of 3
## ..$ mode : chr "IC"
## ..$ first_stop: chr "001"
## ..$ last_stop : chr "008"
## $ platform :List of 4
## ..$ arrival_platform : chr "5"
## ..$ departure_platform: chr "5"
## ..$ footnote : chr "00002"
## ..$ index : num 34
而且,我们可以看一下第一站,第二站(没有到达/到达的站点,所以我想那不是到达的站点),到达/离开的一个站点以及最后一个站点:
str(ns_tbl[[1]]$stop[c(1, 2, 6, 34)], 2)
## List of 4
## $ :List of 4
## ..$ station_short : chr "rtd"
## ..$ departure_time: chr "2532"
## ..$ index : num 1
## ..$ arrival_time : chr NA
## $ :List of 4
## ..$ station_short : chr "rtn"
## ..$ index : num 2
## ..$ arrival_time : chr NA
## ..$ departure_time: chr NA
## $ :List of 4
## ..$ station_short : chr "gd"
## ..$ arrival_time : chr "2550"
## ..$ departure_time: chr "2557"
## ..$ index : num 6
## $ :List of 4
## ..$ station_short : chr "ut"
## ..$ arrival_time : chr "2751"
## ..$ index : num 34
## ..$ departure_time: chr NA
根据评论,我会很乐意为它添加更多信息。
您可以使用标准的R惯用法将部分或全部这些变成数据框:
map_df(ns_tbl, ~{
as.list(c(
unlist(.x$validity),
unlist(.x$transport),
unlist(.x$platform)
)) -> out
out$service <- list(.x$service)
out$stop <- list(.x$stop)
out
}) %>%
glimpse()
## Observations: 40,901
## Variables: 9
## $ footnote <chr> "00002", "00003", "00004", "00005", ...
## $ first_stop <chr> "001", "001", "001", "001", "001", "...
## $ last_stop <chr> "008", "008", "007", "007", "007", "...
## $ mode <chr> "IC", "IC", "IC", "IC", "IC", "IC", ...
## $ arrival_platform <chr> "5", "5", "5", "5", "5", "5", "5", "...
## $ departure_platform <chr> "5", "5", "5", "5", "5", "5", "5", "...
## $ index <chr> "34", "34", "34", "34", "34", "34", ...
## $ service <list> [[["100", "11410", "", "001", "002"...
## $ stop <list> [[["rtd", "2532", 1, NA], ["rtn", 2...
您仍然需要处理将多个记录取消嵌套的位。
此外,顶层的index
实际上只是#个停靠点的元数据,但我会更好地为您命名。
理想情况下,可以解析较小的元数据文件,并使用各种缩写名称的扩展版本。