import pandas as pd
import scipy
from scipy import sparse
dfs = pd.SparseDataFrame(scipy.sparse.random(1000, 1000).toarray())
# just for testing
这太慢了。
import pickle, time
start = time.time()
# serialization
msg = list(pickle.dumps(dfs, protocol=pickle.HIGHEST_PROTOCOL))
# deserialization
dfs = pickle.loads(bytes(msg))
stop = time.time()
stop - start
# 0.4420337677001953
# This is with Python 3.5 so it's using cPickle
与之相比,msgpack在密集版本上的速度更快
df = dfs.to_dense()
start = time.time()
# serialization
msg = list(df.to_msgpack(compress='zlib'))
# deserialization
df = pd.read_msgpack(bytes(msg))
stop = time.time()
stop - start
# 0.09514737129211426
Msgpack就是答案,但我找不到SparseDataFrame(related)的实现
# serialization
dfs.to_msgpack(compress='zlib')
# Returns: NotImplementedError: msgpack sparse frame is not implemented
通过scipy.sparse.coo_matrix
采用坐标格式的msgpack似乎值得考虑,但转换为python.sparse.coo_matrix
的过程很慢
from scipy.sparse import coo_matrix
start = time.time()
# serialization
columns = dfs.columns
shape = dfs.shape
start_to_coo = time.time()
dfc = dfs.to_coo()
stop_to_coo = time.time()
start_comprehension = time.time()
row = [x.item() for x in df.row]
col = [x.item() for x in df.col]
data = [x.item() for x in df.data]
stop_comprehension = time.time()
start_packing = time.time()
msg = list(msgpack.packb({'columns':list(columns), 'shape':shape, 'row':row, 'col':col, 'data':data}))
stop_packing = time.time()
# deserialization
start_unpacking = time.time()
dict = msgpack.unpackb(bytes(msg))
stop_unpacking = time.time()
columns=dict[b'columns']
index=range(dict[b'shape'][0])
dfc = coo_matrix((dict[b'data'], (dict[b'row'], dict[b'col'])), shape=dict[b'shape'])
stop = time.time()
print('total: ' + str(stop - start))
print(' to_coo: ' + str(stop_to_coo - start_to_coo))
print(' comprehension: ' + str(stop_comprehension - start_comprehension))
print(' packing: ' + str(stop_packing - start_packing))
print(' unpacking: ' + str(stop_unpacking - start_unpacking))
#total: 0.2799222469329834
# to_coo: 0.22925591468811035
# comprehension & cast: 0.02356100082397461 (msgpack does not support all numpy formats)
# packing: 0.004893064498901367
# unpacking: 0.001984834671020508
从那里开始,似乎需要经历一种密集的格式。
start = time.time()
dfs = pd.SparseDataFrame(dfc.toarray())
stop = time.time()
stop - start
# 2.8947737216949463
答案 0 :(得分:1)
时间上的开销来自dumps
和loads
中的字符串处理。
使用dumps/loads
:
def pickle_dumps():
msg = list(pickle.dumps(dfs, protocol=pickle.HIGHEST_PROTOCOL))
pickle.loads(bytes(msg))
%timeit pickle_dumps()
# 212 ms ± 2.19 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
使用dump/load
:
def pickle_file():
with open('dump.pickle', 'wb') as f:
pickle.dump(dfs, f, protocol=pickle.HIGHEST_PROTOCOL)
with open('dump.pickle', 'rb') as f:
return pickle.load(f)
%timeit pickle_file()
# 82.7 ms ± 1.25 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
或者使用内置的pandas更短:
def to_pickle():
dfs.to_pickle('./dump.pickle')
pd.read_pickle('./dump.pickle')
%timeit to_pickle()
# 86.8 ms ± 1.54 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
答案 1 :(得分:0)
我的考试有问题
dfs = pd.SparseDataFrame(scipy.sparse.random(1000, 1000).toarray())
并没有真正存储稀疏表示。代替
dfs = pd.DataFrame(scipy.sparse.random(1000, 1000).toarray()).to_sparse(fill_value=0)
确实。
此后,稀疏表示中的pickle效果比密集表示中的msgpack更好。
此外,我使用df.row
代替了dfc.row
。 df
指向另一个数据框。 msgpack可能将结果保存在缓存中,并且没有执行任何操作。
更正此错误后,基于coo_matrix的表示形式上的msgpack不会比数据框上的pickle有所改善。