我一直在使用ggplot2来绘制引导各种统计输出(例如相关系数)的结果。最近,我引导了线性回归模型的斜率。使用plot()
包中的graphics
函数的外观如下:
plot(main="Relationship Between Eruption Length at Wait Time at \n
Old Faithful With Bootstrapped Regression Lines",
xlab = "Eruption Length (minutes)",
ylab = "Wait Time (minutes)",
waiting ~ eruptions,
data = faithful,
col = spot_color,
pch = 19)
index <- 1:nrow(faithful)
for (i in 1:10000) {
index_boot <- sample(index, replace = TRUE) #getting a boostrap sample (of indices)
faithful_boot <- faithful[index_boot, ]
# Fitting the linear model to the bootstrapped data:
fit.boot <- lm(waiting ~ eruptions, data = faithful_boot)
abline(fit.boot, lwd = 0.1, col = rgb(0, 0.1, 0.25, alpha = 0.05)) # Add line to plot
}
fit <- lm(waiting ~ eruptions, data=faithful)
abline(fit, lwd = 2.5, col = "blue")
这可行,但要取决于工作流程,在该工作流程中,我们首先创建一个绘图,然后将这些线添加到循环中。我宁愿使用函数创建一个坡度列表,然后在ggplot2中绘制所有坡度。
例如,该函数可能看起来像这样:
set.seed(777) # included so the following output is reproducible
n_resample <- 10000 # set the number of times to resample the data
# First argument is the data; second is the number of resampled datasets
bootstrap <- function(df, n_resample) {
slope_resample <- matrix(NA, nrow = n_resample) # initialize vector
index <- 1:nrow(df) # create an index for supplied table
for (i in 1:n_resample) {
index_boot <- sample(index, replace = TRUE) # sample row numbers, with replacement
df_boot <- df[index_boot, ] # create a bootstrap sample from original data
a <- lm(waiting ~ eruptions, data=df_boot) # compute linear model
slope_resample[i] <- slope <- a$coefficients[2] # take the slope
}
return(slope_resample) # Return a vector of differences of proportion
}
bootstrapped_slopes <- bootstrap(faithful, 10000)
但是如何获取geom_line()
或geom_smooth()
以从bootstrapped_slopes
获取数据?非常感谢您的协助。
答案 0 :(得分:1)
对于绘图,我想您既需要斜率又需要截距,因此这是一个经过修改的bootstrap
函数:
bootstrap <- function(df, n_resample) {
# Note 2 dimensions here, for slope and intercept
slope_resample <- matrix(NA, 2, nrow = n_resample) # initialize vector
index <- 1:nrow(df) # create an index for supplied table
for (i in 1:n_resample) {
index_boot <- sample(index, replace = TRUE) # sample row numbers, with replacement
df_boot <- df[index_boot, ] # create a bootstrap sample from original data
a <- lm(waiting ~ eruptions, data=df_boot) # compute linear model
slope_resample[i, 1] <- slope <- a$coefficients[1] # take the slope
slope_resample[i, 2] <- intercept <- a$coefficients[2] # take the intercept
}
# Return a data frame with all the slopes and intercepts
return(as.data.frame(slope_resample))
}
然后运行它并绘制该数据框中的线:
bootstrapped_slopes <- bootstrap(faithful, 10000)
library(dplyr); library(ggplot2)
ggplot(faithful, aes(eruptions, waiting)) +
geom_abline(data = bootstrapped_slopes %>%
sample_n(1000), # 10k lines look about the same as 1k, just darker and slower
aes(slope = V2, intercept = V1), #, group = id),
alpha = 0.01) +
geom_point(shape = 19, color = "red")
这也可以使用modelr
和broom
来简化一些引导程序。根据{{1}}的主要帮助示例,我们可以执行以下操作:
modelr::bootstrap