我有一个箱形图:
fig, ax = plt.subplots(1,1)
bp = df.boxplot(column='transaction_value',
by='store_type', grid=True,
ax=ax, showfliers=True)
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
ax.set_ylim([0, 800])
ax.set_ylabel('transaction_value')
plt.show()
我有一条血腥的地衣:
bplot=sns.stripplot(y='transaction_value', x='store_type',
data=df,
jitter=True,
marker='o',
alpha=0.1,
color='black')
当我尝试将带状图叠加在箱形图上时,它会删除第一个箱形图(在最左侧)。
fig, ax = plt.subplots(1,1)
bp = df.boxplot(column='transaction_value',
by='store_type', grid=True,
ax=ax, showfliers=True)
bplot=sns.stripplot(y='transaction_value', x='store_type',
data=df,
jitter=True,
marker='o',
alpha=0.1,
color='black')
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
ax.set_ylim([0, 500])
ax.set_ylabel('transaction_value')
plt.show()
如何阻止这种情况发生?
a
transaction_value store_type
0 30.927648 express
1 20.356693 extra
2 48.201950 metro
3 77.213957 metro
4 15.482211 superstore
5 85.794876 superstore
6 16.199844 extra
7 0.007816 superstore
8 50.925737 metro
9 81.393811 metro
10 7.616312 superstore
11 82.172441 metro
12 49.608503 extra
13 71.907878 metro
14 85.833738 superstore
15 88.131029 express
16 11.541427 extra
17 89.759724 metro
18 96.435902 superstore
19 91.984656 superstore
20 67.795293 metro
21 39.806654 superstore
22 39.565823 metro
23 37.507718 superstore
24 37.918300 metro
25 18.599158 metro
26 3.815219 extra
27 83.210068 express
28 3.988503 extra
29 94.298953 superstore
a = pd.read_clipboard()
fig, ax = plt.subplots(1,1)
bp = a.boxplot(column='transaction_value',
by='store_type', grid=True,
ax=ax, showfliers=True)
bplot=sns.stripplot(y='transaction_value', x='store_type',
data=a,
jitter=True,
marker='o',
alpha=0.1,
color='black')
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
ax.set_ylim([0, 500])
ax.set_ylabel('transaction_value')
plt.show()
答案 0 :(得分:1)
@ImportanceOfBeingErnest在我键入内容时在注释中提供了一种解决方案,但我将提出其他建议:
为了获得更好的一致性,我建议也使用seaborn进行箱形图绘制,这应该确保两个图的布局方式相同,
fig, ax = plt.subplots(1,1)
sns.boxplot(y='transaction_value', x='store_type', data=df, ax=ax,
color='w')
sns.stripplot(y='transaction_value', x='store_type', data=df, ax=ax,
jitter=True,
marker='o',
alpha=0.1,
color='black')
ax.set_ylabel('transaction_value')
plt.show()