为Keras编写自定义数据生成器

时间:2018-10-11 07:22:57

标签: python keras generator

我用shape=(1024,7,8)将每个数据点存储在.npy文件中。我想通过类似于ImageDataGenerator的方式将它们加载到Keras模型中,因此我编写并尝试了不同的自定义生成器,但是它们都没有起作用,这是我从this改编而成的一个生成器

def find(dirpath, prefix=None, suffix=None, recursive=True):
    """Function to find recursively all files with specific prefix and suffix in a directory
    Return a list of paths
    """
    l = []
    if not prefix:
        prefix = ''
    if not suffix:
        suffix = ''
    for (folders, subfolders, files) in os.walk(dirpath):
        for filename in [f for f in files if f.startswith(prefix) and f.endswith(suffix)]:
            l.append(os.path.join(folders, filename))
        if not recursive:
            break
    l
    return l

def generate_data(directory, batch_size):
    i = 0
    file_list = find(directory)
    while True:
        array_batch = []
        for b in range(batch_size):
            if i == len(file_list):
                i = 0
                random.shuffle(file_list)
            sample = file_list[i]
            i += 1

            array = np.load(sample)
            array_batch.append(array)

        yield array_batch

我发现缺少标签,因此无法使用fit_generator将其放入模型中。假设我可以将标签存储在numpy数组中,如何将其添加到此生成器中?

1 个答案:

答案 0 :(得分:3)

from tensorflow.python.keras.utils import Sequence
import numpy as np   

class mygenerator(Sequence):
    def __init__(self, x_set, y_set, batch_size):
        self.x, self.y = x_set, y_set
        self.batch_size = batch_size

    def __len__(self):
        return int(np.ceil(len(self.x) / float(self.batch_size)))

    def __getitem__(self, idx):
        batch_x = self.x[idx * self.batch_size:(idx + 1) * self.batch_size]
        batch_y = self.y[idx * self.batch_size:(idx + 1) * self.batch_size]

        # read your data here using the batch lists, batch_x and batch_y
        x = [my_readfunction(filename) for filename in batch_x] 
        y = [my_readfunction(filename) for filename in batch_y]
        return np.array(x), np.array(y)