基于索引值(时间点)而非观察次数R

时间:2018-10-10 18:12:14

标签: r time-series subset rolling-computation

我有一个具有一个时标和多个时间序列的数据帧。我想以动态滚动的方式将其子集化,并将窗口的宽度设置为例如10年由于未等距采样时间序列,因此窗口沿数据帧滚动时,其行数将发生变化。 计算应基于时间值而不是观察次数。

例如,在以下data.frame中:

time    var1    var2
5262    -8.981  -0.011
5263.2  -8.993  -0.012
5264.4  -8.978  0.015
5265.6  -9.169  -0.191
5266.8  -8.897  0.272
5268    -9.024  -0.127
5269.2  -8.996  0.028
5270.46 -8.979  0.017
5271.84 -9.004  -0.025
5273.22 -9.01   -0.006
5274.6  -9.106  -0.096
5275.98 -8.971  0.135
5277.36 -8.996  -0.025
5278.74 -8.956  0.04
5280.12 -8.981  -0.025
5281.5  -8.982  -0.001
5282.88 -9.042  -0.06
5284.26 -9.091  -0.049
5285.64 -9.066  0.025
5287.02 -9.03   0.036
5288.4  -9.031  -0.001
5289.78 -9.028  0.003
5291.16 -9.164  -0.136
5294.72 -9.034  0.13
5297.3  -9.296  -0.262
5299.88 -9.097  0.199
5302.46 -8.995  0.102
5305.04 -9.084  -0.089
5307.62 -9.047  0.037
5310.2  -9.066  -0.019
5312.78 -9.07   -0.004
5315.36 -9  0.07
5317.94 -9.057  -0.057
5320.52 -9.219  -0.162
5323.1  -9.084  0.135
5325.68 -9.034  0.05
5328.26 -9.147  -0.113
5330.84 -9.169  -0.022
5333.42 -9.143  0.026
5336    -9.211  -0.068
5338.58 -9.061  0.15
5341.16 -9.1    -0.039
5343.74 -9.094  0.006
5346.32 -9.104  -0.01
5348.9  -9.089  0.015
5351.48 -9.127  -0.038
5354.06 -8.973  0.154
5356.64 -9.009  -0.036
5359.22 -8.966  0.043
5361.8  -8.996  -0.03
5364.38 -8.877  0.119
5366.96 -8.962  -0.085
5369.54 -8.902  0.06
5372.12 -8.915  -0.013
5374.7  -8.913  0.002
5377.28 -8.834  0.079
5379.86 -8.91   -0.076
5382.44 -8.742  0.168
5385.02 -8.877  -0.135
5387.6  -8.743  0.134
5390.18 -8.898  -0.155
5392.76 -8.77   0.128
5395.34 -8.97   -0.2
5397.92 -8.849  0.121
5400.5  -8.846  0.003
5403.08 -8.865  -0.019
5405.66 -8.865  0
5408.24 -8.876  -0.011
5410.82 -8.775  0.101
5413.4  -8.842  -0.067
5415.98 -8.821  0.021
5418.56 -8.85   -0.029

我之前所做的是将df子集化,但是通过使用以下代码引用行号并执行线性回归。

data.column=2
time.column=1
length=dim(data)[1] 
window=10
adj_r_sqr=matrix(0,nrow=length,length(window_vekt))
colnames(adj_r_sqr)=window


    for(i in 1:(length-window)){
        x=data[i:(i+window),time.column]
        y=data[i:(i+window),data.column]  
        lmodel=lm(y~x)
        adj_r_sqr[i+floor(window/2)-1),which(window_vekt==window)]=summary(lmodel)$adj.r.squared}

但这不会解释时间间隔的变化。

我需要做的是一种调整,该调整基于第一列筛选数据帧,并将其子集滚动显示,以便子集覆盖所选窗口,并且如果该窗口中的行数小于5则给出NA。 。 另一个问题可能是对数据进行子集化,而不是滚动地进行,而是再次使用时间变量以拼接的方式进行。

以前,我设法不仅提取了adj。 r2,但p值和其他以及斜率也可以使用:

RMSE=sqrt(mean((summary(lmodel)$residuals)^2))
p_val_y=summary(lmodel)$coefficients[2,4]
p_val_intercept=summary(lmodel)$coefficients[1,4]
slope=coeff[i+summary(lmodel)$coefficients[2,1]

但是使用旧的窗口,不幸的是,由于我的能力不足,我无法在@Uwe建议的查询中实现这些功能。

可以在以下链接上找到测试数据集: test_data.csv

1 个答案:

答案 0 :(得分:3)

滚动窗口

这可以通过聚集非等额联接来解决,该联接聚集涵盖给定时间段的不同数量的行。

library(data.table)
# define parameters
time_1 <- -10
time_2 <- 10
n_min <- 5L
# create helper columns
setDT(dat)[, `:=`(join = time, start = time + time_1, end = time + time_2)][
  # non-equi join and aggregate 
  dat, on = .(join >= start, join <= end), by = .EACHI, {
    lmodel <- lm(var1 ~ time)
    lsumm <- summary(lmodel)
    .(time = i.time, 
      N = .N, 
      adj_r_sqr = lsumm$adj.r.squared,
      RMSE = sqrt(mean(lsumm$residuals^2)),
      p_val_y = if (.N > 1) lsumm$coefficients[2,4] else NA_real_,
      p_val_intercept = lsumm$coefficients[1,4],
      slope = coef(lmodel)[2]
    )
  }]
       join    join    time  N     adj_r_sqr       RMSE     p_val_y p_val_intercept         slope
 1: 5252.00 5272.00 5262.00  9 -1.412484e-01 0.06749996 0.923658051      0.76541424  8.050483e-04
 2: 5253.20 5273.20 5263.20  9 -1.412484e-01 0.06749996 0.923658051      0.76541424  8.050483e-04
 3: 5254.40 5274.40 5264.40 10 -1.248329e-01 0.06411770 0.973340896      0.77035143  2.202740e-04
 4: 5255.60 5275.60 5265.60 11 -5.914522e-02 0.06631161 0.523022100      0.72831553 -3.713582e-03
 5: 5256.80 5276.80 5266.80 12 -8.934954e-02 0.06570860 0.760946792      0.96376799 -1.488205e-03
 6: 5258.00 5278.00 5268.00 13 -8.696209e-02 0.06341811 0.845238030      0.82437256 -7.998616e-04
 7: 5259.20 5279.20 5269.20 14 -8.098718e-02 0.06260179 0.874476744      0.52663574  5.619086e-04
 8: 5260.46 5280.46 5270.46 15 -6.931305e-02 0.06060738 0.765814583      0.39825585  9.125789e-04
 9: 5261.84 5281.84 5271.84 16 -5.793624e-02 0.05873142 0.679041724      0.29974544  1.102731e-03
10: 5263.22 5283.22 5273.22 15 -6.443192e-02 0.06113970 0.702430340      0.34981142  1.151509e-03
11: 5264.60 5284.60 5274.60 15 -7.684134e-02 0.06444578 0.975417917      0.56686522  9.651049e-05
12: 5265.98 5285.98 5275.98 15  1.462585e-01 0.04608930 0.088169168      0.30888780 -4.011513e-03
13: 5267.36 5287.36 5277.36 15  1.964299e-02 0.04086278 0.278246773      0.81455430 -2.166657e-03
14: 5268.74 5288.74 5278.74 15  6.215962e-02 0.04008533 0.188319558      0.64301698 -2.594692e-03
15: 5270.12 5290.12 5280.12 15  4.288832e-02 0.04025402 0.224394742      0.72203401 -2.388716e-03
16: 5271.50 5291.50 5281.50 15  1.512386e-01 0.04851035 0.084258193      0.28641439 -4.218427e-03
17: 5272.88 5292.88 5282.88 14  1.381176e-01 0.05002305 0.104568029      0.29409267 -4.558051e-03
18: 5274.26 5294.26 5284.26 13  1.327825e-01 0.05157048 0.120223456      0.28797520 -5.072464e-03
19: 5275.64 5295.64 5285.64 13  3.596767e-01 0.04138389 0.017834204      0.06667444 -6.361901e-03
20: 5277.02 5297.02 5287.02 12  2.873660e-01 0.04305408 0.041945918      0.12120605 -6.247512e-03
21: 5278.40 5298.40 5288.40 12  5.028991e-01 0.05961926 0.005895787      0.01376478 -1.191625e-02
22: 5279.78 5299.78 5289.78 11  4.293597e-01 0.06222915 0.017042382      0.03427994 -1.172318e-02
23: 5281.16 5301.16 5291.16 11  2.515343e-01 0.06779510 0.066374606      0.13205602 -8.296797e-03
24: 5284.72 5304.72 5294.72  9 -1.061158e-01 0.08743787 0.644376920      0.85394202 -2.841506e-03
25: 5287.30 5307.30 5297.30  8 -1.646716e-01 0.09175885 0.922552618      0.87761939 -6.640669e-04
26: 5289.88 5309.88 5299.88  7  1.448103e-02 0.08454602 0.344665870      0.25432610  7.335472e-03
27: 5292.46 5312.46 5302.46  7 -7.071101e-02 0.08530518 0.472291173      0.35934829  5.744740e-03
28: 5295.04 5315.04 5305.04  7  1.737202e-01 0.07307195 0.192955618      0.13615980  9.523810e-03
29: 5297.62 5317.62 5307.62  7 -8.646937e-02 0.03513349 0.502173104      0.25578453  2.200997e-03
30: 5300.20 5320.20 5310.20  7 -1.900736e-01 0.03206618 0.846235515      0.69966581 -5.675526e-04
31: 5302.78 5322.78 5312.78  7  5.536354e-05 0.05732965 0.363144502      0.54063521 -4.969546e-03
32: 5305.36 5325.36 5315.36  7  5.335182e-02 0.05578091 0.299620417      0.45814873 -5.592470e-03
33: 5307.94 5327.94 5317.94  7 -1.657721e-01 0.06294568 0.717357983      0.94666422 -2.090255e-03
34: 5310.52 5330.52 5320.52  7 -6.028327e-02 0.06414699 0.453853207      0.63535624 -4.512735e-03
35: 5313.10 5333.10 5323.10  7  8.740895e-02 0.06389452 0.264987111      0.38753689 -6.949059e-03
36: 5315.68 5335.68 5325.68  7 -1.197917e-01 0.05898249 0.575617471      0.80276014 -3.059247e-03
37: 5318.26 5338.26 5328.26  7 -1.150258e-01 0.05925244 0.564069556      0.78843841 -3.169989e-03
38: 5320.84 5340.84 5330.84  7 -5.959161e-02 0.05513800 0.452664410      0.66756091 -3.889812e-03
39: 5323.42 5343.42 5333.42  7 -1.914314e-01 0.05727449 0.857057704      0.88289558 -9.413068e-04
40: 5326.00 5346.00 5336.00  7  1.980666e-01 0.03842399 0.175981115      0.09097818  5.246401e-03
41: 5328.58 5348.58 5338.58  7  2.435057e-01 0.03768830 0.147555108      0.07564568  5.592470e-03
42: 5331.16 5351.16 5341.16  7  1.506886e-01 0.03812754 0.210258699      0.10821693  4.748062e-03
43: 5333.74 5353.74 5343.74  7 -8.457396e-02 0.04203885 0.498438355      0.28478388  2.657807e-03
44: 5336.32 5356.32 5346.32  7 -7.010584e-02 0.04407872 0.471193766      0.27563851  2.976190e-03
45: 5338.90 5358.90 5348.90  7  3.356662e-01 0.03913660 0.100918300      0.05396996  6.810631e-03
46: 5341.48 5361.48 5351.48  7  5.571886e-01 0.03769020 0.032860686      0.01839957  9.551495e-03
47: 5344.06 5364.06 5354.06  7  5.543731e-01 0.03777052 0.033425890      0.01873703  9.523810e-03
48: 5346.64 5366.64 5356.64  7  6.568462e-01 0.04090850 0.016679391      0.01024635  1.252769e-02
49: 5349.22 5369.22 5359.22  7  4.263635e-01 0.04784925 0.066663521      0.04074626  9.689922e-03
50: 5351.80 5371.80 5361.80  7  2.805982e-01 0.03460683 0.127153338      0.06281590  5.481728e-03
51: 5354.38 5374.38 5364.38  7  3.716517e-01 0.03324983 0.086098144      0.04219813  6.146179e-03
52: 5356.96 5376.96 5366.96  7  1.502772e-01 0.03293035 0.210579418      0.09951647  4.097453e-03
53: 5359.54 5379.54 5369.54  7  3.375742e-01 0.03655294 0.100088760      0.05199627  6.381506e-03
54: 5362.12 5382.12 5372.12  7 -1.007327e-01 0.03472663 0.531670980      0.27614749  2.021041e-03
55: 5364.70 5384.70 5374.70  7  5.143262e-01 0.04270061 0.042184448      0.02514076  1.003599e-02
56: 5367.28 5387.28 5377.28  7  1.180375e-01 0.05043403 0.237081066      0.14603312  5.869324e-03
57: 5369.86 5389.86 5379.86  7  3.526957e-01 0.05256444 0.093690478      0.05958580  9.413068e-03
58: 5372.44 5392.44 5382.44  7 -1.143248e-01 0.06697669 0.562404900      0.40786204  3.599114e-03
59: 5375.02 5395.02 5385.02  7 -1.380467e-01 0.06582006 0.624143540      0.45527492  2.976190e-03
60: 5377.60 5397.60 5387.60  7 -1.437437e-01 0.08277209 0.640981907      0.80007275 -3.557586e-03
61: 5380.18 5400.18 5390.18  7  6.865351e-02 0.07101868 0.283553003      0.39287969 -7.392027e-03
62: 5382.76 5402.76 5392.76  7 -1.557062e-01 0.06968790 0.679826634      0.87463729 -2.643965e-03
63: 5385.34 5405.34 5395.34  7 -5.672857e-02 0.06614976 0.447786680      0.61411355 -4.720377e-03
64: 5387.92 5407.92 5397.92  7 -1.978539e-01 0.05568786 0.928270615      0.68172236  4.568106e-04
65: 5390.50 5410.50 5400.50  7 -1.682576e-01 0.05373328 0.727529980      0.98771567 -1.716501e-03
66: 5393.08 5413.08 5403.08  7  3.659413e-01 0.03870980 0.088336383      0.04816083  7.087486e-03
67: 5395.66 5415.66 5405.66  7 -5.189744e-02 0.02893483 0.439709327      0.19602199  2.104097e-03
68: 5398.24 5418.24 5408.24  7  6.657153e-02 0.02820253 0.285688876      0.12137978  2.920819e-03
69: 5400.82 5420.82 5410.82  7 -3.417829e-02 0.02978965 0.411610972      0.18697576  2.311739e-03
70: 5403.40 5423.40 5413.40  6 -1.689106e-01 0.03205016 0.626213128      0.38442443  1.915836e-03
71: 5405.98 5425.98 5415.98  5 -3.324952e-01 0.03383253 0.968080223      0.75067625  2.325581e-04
72: 5408.56 5428.56 5418.56  4  4.196229e-01 0.01811905 0.217004528      0.29310481 -7.906977e-03
       join    join    time  N     adj_r_sqr       RMSE     p_val_y p_val_intercept         slope

编辑:OP将link发布到另一个示例数据集,该数据集发生错误。原因是某些组的大小太小,仅包含一个数据点,因此线性模型没有斜率。

代码的更新版本可以解决此问题,并防止出现越界错误。


前两列显示了所涵盖的年份范围;如果不再需要它们,可以将其删除。

Nlm()计算中包含的行数。如果NA,OP已请求返回N < 5。此后也可以完成。

# define parameters
time_1 <- -10
time_2 <- 10
n_min <- 5L
# coerce to data.table
result <- setDT(dat)[
  # create helper columns
  , `:=`(join = time, start = time + time_1, end = time + time_2)][
    # non-equi join and aggregate each interval 
    dat, on = .(join >= start, join <= end), by = .EACHI, {
      # do computations within interval
      lmodel <- lm(var1 ~ time)
      lsumm <- summary(lmodel)
      # create list of results, finally
      .(time = i.time, 
        N = .N, 
        adj_r_sqr = lsumm$adj.r.squared,
        RMSE = sqrt(mean(lsumm$residuals^2)),
        p_val_y = if (.N > 1) lsumm$coefficients[2,4] else NA_real_,
        p_val_intercept = lsumm$coefficients[1,4],
        slope = coef(lmodel)[2]
      )
    }]
# clean-up result
computed_cols <- setdiff(names(result), c(names(dat), "N"))
result[
  # remove join columns
  , -(1:2)][
    # put NA if too few data points
    N < n_min, (computed_cols) := NA][]
       time  N     adj_r_sqr       RMSE     p_val_y p_val_intercept         slope
 1: 5262.00  9 -1.412484e-01 0.06749996 0.923658051      0.76541424  8.050483e-04
 2: 5263.20  9 -1.412484e-01 0.06749996 0.923658051      0.76541424  8.050483e-04
 3: 5264.40 10 -1.248329e-01 0.06411770 0.973340896      0.77035143  2.202740e-04
    ...
70: 5413.40  6 -1.689106e-01 0.03205016 0.626213128      0.38442443  1.915836e-03
71: 5415.98  5 -3.324952e-01 0.03383253 0.968080223      0.75067625  2.325581e-04
72: 5418.56  4            NA         NA          NA              NA            NA
       time  N     adj_r_sqr       RMSE     p_val_y p_val_intercept         slope

以固定间隔分割

OP也曾要求

  

另一个问题可能是对数据进行子集化,而不是   滚动,而不是再次使用时间变量进行拼接。

# define parameters
n_min <- 5L
t_len <- 20
# create "pretty" breaks 
breaks <- setDT(dat)[, seq(floor(min(time)/t_len)*t_len, max(time) + t_len, t_len)]
dat[, {
  lmodel <- lm(var1 ~ time)
  lsumm <- summary(lmodel)
  .(t_min = min(time),
    t_max = max(time),
    N = .N, 
    adj_r_sqr = lsumm$adj.r.squared,
    RMSE = sqrt(mean(lsumm$residuals^2)),
    p_val_y = if (.N > 1) lsumm$coefficients[2,4] else NA_real_,
    p_val_intercept = lsumm$coefficients[1,4],
    slope = coef(lmodel)[2]
  )
}, by = .(cut(time, breaks))]
                   cut   t_min   t_max  N   adj_r_sqr       RMSE    p_val_y p_val_intercept         slope
1: (5.26e+03,5.28e+03] 5262.00 5278.74 14 -0.08098718 0.06260179 0.87447674      0.52663574  0.0005619086
2:  (5.28e+03,5.3e+03] 5280.12 5299.88 12  0.33144858 0.06512008 0.02934449      0.06866916 -0.0087040163
3:  (5.3e+03,5.32e+03] 5302.46 5317.94  7 -0.19007362 0.03206618 0.84623551      0.69966581 -0.0005675526
4: (5.32e+03,5.34e+03] 5320.52 5338.58  8 -0.16348201 0.06360759 0.90221583      0.62280945  0.0005629384
5: (5.34e+03,5.36e+03] 5341.16 5359.22  8  0.54042068 0.03778046 0.02285248      0.01024298  0.0079272794
6: (5.36e+03,5.38e+03] 5361.80 5379.86  8  0.20369592 0.03803705 0.14585425      0.06090703  0.0043881506
7:  (5.38e+03,5.4e+03] 5382.44 5397.92  7  0.06865351 0.07101868 0.28355300      0.39287969 -0.0073920266
8:  (5.4e+03,5.42e+03] 5400.50 5418.56  8 -0.04065894 0.02837687 0.42672518      0.14267960  0.0016703581