在xarray中打开netcdf文件时,可以使用切片来选择区域,即使用预处理,即:
SSA=dict(lat=slice(-38,-34),lon=slice(138,141))
def Mask(ds):
return ds.sel(**SSA)
xr.open_mfdataset(filelist, preprocess=Mask)
但是通过纬度和经度提取一系列单独点数据的最有效方法是什么?
答案 0 :(得分:0)
可以使用DataArray
作为索引器来选择点列表。这将导致数组沿索引器的坐标重新索引。
直接从More Advanced Indexing上的文档开始:
In [78]: da = xr.DataArray(np.arange(56).reshape((7, 8)), dims=['x', 'y'])
In [79]: da
Out[79]:
<xarray.DataArray (x: 7, y: 8)>
array([[ 0, 1, 2, 3, 4, 5, 6, 7],
[ 8, 9, 10, 11, 12, 13, 14, 15],
[16, 17, 18, 19, 20, 21, 22, 23],
[24, 25, 26, 27, 28, 29, 30, 31],
[32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47],
[48, 49, 50, 51, 52, 53, 54, 55]])
Dimensions without coordinates: x, y
In [80]: da.isel(x=xr.DataArray([0, 1, 6], dims='z'),
....: y=xr.DataArray([0, 1, 0], dims='z'))
....:
Out[80]:
<xarray.DataArray (z: 3)>
array([ 0, 9, 48])
Dimensions without coordinates: z
使用DataFrame
之类的东西也可以很容易地将索引数组从熊猫da.sel(longitude=df.longitude.to_xarray(), latitude=df.latitude.to_xarray())
中拉出,这将导致DataArray
被 DataFrame重新索引索引。