我正在用Python实现GeeksForGeeks的Bellman ford算法。我想使用像pyplot或networkx之类的库来生成Graph(图表形式,而不是字典类型,这很容易)。我希望图形用户界面包含节点,边和各自的成本。
from collections import defaultdict
#Class to represent a graph
class Graph:
def __init__(self,vertices):
self.V= vertices #No. of vertices
self.graph = [] # default dictionary to store graph
# function to add an edge to graph
def addEdge(self,u,v,w):
self.graph.append([u, v, w])
# utility function used to print the solution
def printArr(self, dist):
print("Vertex Distance from Source")
for i in range(self.V):
print("%d \t\t %d" % (i, dist[i]))
# The main function that finds shortest distances from src to
# all other vertices using Bellman-Ford algorithm. The function
# also detects negative weight cycle
def BellmanFord(self, src):
# Step 1: Initialize distances from src to all other vertices
# as INFINITE
dist = [float("Inf")] * self.V
dist[src] = 0
# Step 2: Relax all edges |V| - 1 times. A simple shortest
# path from src to any other vertex can have at-most |V| - 1
# edges
for i in range(self.V - 1):
# Update dist value and parent index of the adjacent vertices of
# the picked vertex. Consider only those vertices which are still in
# queue
for u, v, w in self.graph:
if dist[u] != float("Inf") and dist[u] + w < dist[v]:
dist[v] = dist[u] + w
# Step 3: check for negative-weight cycles. The above step
# guarantees shortest distances if graph doesn't contain
# negative weight cycle. If we get a shorter path, then there
# is a cycle.
for u, v, w in self.graph:
if dist[u] != float("Inf") and dist[u] + w < dist[v]:
print "Graph contains negative weight cycle"
return
# print all distance
self.printArr(dist)
g = Graph(5)
g.addEdge(0, 1, -1)
g.addEdge(0, 2, 4)
g.addEdge(1, 2, 3)
g.addEdge(1, 3, 2)
g.addEdge(1, 4, 2)
g.addEdge(3, 2, 5)
g.addEdge(3, 1, 1)
g.addEdge(4, 3, -3)
我想要在终端或单独文件中的图形是(基于上述代码):
答案 0 :(得分:1)
如果您对{x3}进行networkx的检查,您会发现创建有向图以及对其进行绘图非常容易。
非常多,对于有向图或简单图(在API方面),这是相同的,并且绘制也足够简单,并使用Matplotlib生成它。
您可以制作一个Tk应用程序,该应用程序允许您手动输入节点和Edges,并将它们存储在ListBoxes中,并绘制图形,就此而言,它不会被拖放,但仍然,它可以帮助您动态显示图形。
和此Matplotlib tutorial,将为您提供如何将其嵌入TK应用程序的想法。
答案 1 :(得分:1)
ekiim的文档链接非常有用。这是我绘制图形的代码:
import networkx as nx
import matplotlib.pyplot as plt
G=nx.DiGraph()
G.add_node(0),G.add_node(1),G.add_node(2),G.add_node(3),G.add_node(4)
G.add_edge(0, 1),G.add_edge(1, 2),G.add_edge(0, 2),G.add_edge(1, 4),G.add_edge(1, 3),G.add_edge(3, 2),G.add_edge(3,1),G.add_edge(4,3)
nx.draw(G, with_labels=True, font_weight='bold')
plt.show()
此代码免费打印有向图。我尝试使用成本进行打印,但是由于成本混乱,输出严重失真。有些成本写在空白处,而边缘只有一两个。因此,如果有人知道实现它将非常有用。