我正在使用有限的RAM(AWS免费层EC2服务器-1GB)。
我有一个相对较大的txt文件“ vectors.txt”(800mb),我正在尝试读入R。尝试了各种方法后,我都无法将该向量读入内存。
因此,我正在研究以大块读取的方式。我知道结果数据帧的暗淡应该是300K *300。如果我能够读取文件,例如一次10K行,然后将每个块保存为RDS文件,我将能够遍历结果并获得所需的内容,尽管比将整个内容存储在内存中要慢一些,但也没有那么方便。
要复制:
# Get data
url <- 'https://github.com/eyaler/word2vec-slim/blob/master/GoogleNews-vectors-negative300-SLIM.bin.gz?raw=true'
file <- "GoogleNews-vectors-negative300-SLIM.bin.gz"
download.file(url, file) # takes a few minutes
R.utils::gunzip(file)
# word2vec r library
library(rword2vec)
w2v_gnews <- "GoogleNews-vectors-negative300-SLIM.bin"
bin_to_txt(w2v_gnews,"vector.txt")
到目前为止,一切都很好。这是我挣扎的地方:
word_vectors = as.data.frame(read.table("vector.txt",skip = 1, nrows = 10))
返回“无法分配大小为[size]的向量”错误消息。
尝试过的替代方法:
word_vectors <- ff::read.table.ffdf(file = "vector.txt", header = TRUE)
相同,内存不足
word_vectors <- readr::read_tsv_chunked("vector.txt",
callback = function(x, i) saveRDS(x, i),
chunk_size = 10000)
结果:
Parsed with column specification:
cols(
`299567 300` = col_character()
)
|=========================================================================================| 100% 817 MB
Error in read_tokens_chunked_(data, callback, chunk_size, tokenizer, col_specs, :
Evaluation error: bad 'file' argument.
还有其他方法可以将vectors.txt转换为数据帧吗?也许通过将其分成几部分并读取每一部分,另存为数据帧然后保存为rds?或其他替代方法?
编辑: 根据乔纳森(Jonathan)的以下回答,尝试过:
library(rword2vec)
library(RSQLite)
# Download pre trained Google News word2vec model (Slimmed down version)
# https://github.com/eyaler/word2vec-slim
url <- 'https://github.com/eyaler/word2vec-slim/blob/master/GoogleNews-vectors-negative300-SLIM.bin.gz?raw=true'
file <- "GoogleNews-vectors-negative300-SLIM.bin.gz"
download.file(url, file) # takes a few minutes
R.utils::gunzip(file)
w2v_gnews <- "GoogleNews-vectors-negative300-SLIM.bin"
bin_to_txt(w2v_gnews,"vector.txt")
# from https://privefl.github.io/bigreadr/articles/csv2sqlite.html
csv2sqlite <- function(tsv,
every_nlines,
table_name,
dbname = sub("\\.txt$", ".sqlite", tsv),
...) {
# Prepare reading
con <- RSQLite::dbConnect(RSQLite::SQLite(), dbname)
init <- TRUE
fill_sqlite <- function(df) {
if (init) {
RSQLite::dbCreateTable(con, table_name, df)
init <<- FALSE
}
RSQLite::dbAppendTable(con, table_name, df)
NULL
}
# Read and fill by parts
bigreadr::big_fread1(tsv, every_nlines,
.transform = fill_sqlite,
.combine = unlist,
... = ...)
# Returns
con
}
vectors_data <- csv2sqlite("vector.txt", every_nlines = 1e6, table_name = "vectors")
结果:
Splitting: 12.4 seconds.
Error: nThread >= 1L is not TRUE
答案 0 :(得分:1)
另一种选择是在磁盘上进行处理,例如使用SQLite文件和dplyr
的数据库功能。这是一个选项:https://stackoverflow.com/a/38651229/4168169
要将CSV导入SQLite,您还可以使用bigreadr
软件包,其中包含有关如何执行此操作的文章:https://privefl.github.io/bigreadr/articles/csv2sqlite.html