我正在尝试编写一个既可读取又可写入Kafka的流式应用程序。我目前有这个,但是我必须toString我的元组类。
object StreamingJob {
def main(args: Array[String]) {
// set up the streaming execution environment
val env = StreamExecutionEnvironment.getExecutionEnvironment
val properties = new Properties()
properties.setProperty("bootstrap.servers", "localhost:9092")
properties.setProperty("zookeeper.connect", "localhost:2181")
properties.setProperty("group.id", "test")
val consumer = env.addSource(new FlinkKafkaConsumer08[String]("topic", new SimpleStringSchema(), properties))
val counts = consumer.flatMap { _.toLowerCase.split("\\W+") filter { _.nonEmpty } }
.map { (_, 1) }
.keyBy(0)
.timeWindow(Time.seconds(5))
.sum(1)
val producer = new FlinkKafkaProducer08[String](
"localhost:9092",
"my-topic",
new SimpleStringSchema())
counts.map(_.toString()).addSink(producer)
env.execute("Window Stream WordCount")
env.execute("Flink Streaming Scala API Skeleton")
}
}
与之最接近的工作如下,但是FlinkKafkaProducer08拒绝接受类型参数作为构造函数的一部分。
val producer = new FlinkKafkaProducer08[(String, Int)](
"localhost:9092",
"my-topic",
new TypeSerializerOutputFormat[(String, Int)])
counts.addSink(producer)
我想知道是否可以将元组直接写到我的Kafka接收器中。
答案 0 :(得分:0)
您需要一个类似这样的序列化您的元组的类:
private class SerSchema extends SerializationSchema[Tuple2[String, Int]] {
override def serialize(tuple2: Tuple2[String, Int]): Array[Byte] = ...
}