我尝试对sklearn上的校准分类器使用软投票。由于到目前为止软投票还没有prefit
选项,因此我试图让VotingClassifier.fit()
呼叫CalibratedClassifierCV.fit()
。以下是我的代码:
data = load_breast_cancer()
# Data spliting.
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.25)
# Base classifiers.
clf_svm = svm.SVC(gamma=0.001, probability=True)
clf_svm.fit(X_train, y_train)
clf_lr = LogisticRegression(random_state=0, solver='lbfgs')
clf_lr.fit(X_train, y_train)
svm_isotonic = CalibratedClassifierCV(clf_svm, cv='prefit', method='isotonic')
svm_isotonic.fit(X_val, y_val)
lr_isotonic = CalibratedClassifierCV(clf_lr, cv='prefit', method='isotonic')
lr_isotonic.fit(X_val, y_val)
eclf_soft2 = VotingClassifier(estimators=[
('svm', svm_isotonic), ('lr', lr_isotonic)], voting ='soft')
eclf_soft2.fit(X_val, y_val)
但是,我遇到了一些奇怪的错误:
Traceback (most recent call last):
File "/home/ubuntu/projects/faceRecognition/faceVerif/util/plot_calibration.py", line 127, in <module>
main(parse_arguments(sys.argv[1:]))
File "/home/ubuntu/projects/faceRecognition/faceVerif/util/plot_calibration.py", line 120, in main
eclf_soft2.fit(X_val, y_val)
File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/sklearn/ensemble/voting_classifier.py", line 189, in fit
for clf in clfs if clf is not None)
File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py", line 779, in __call__
while self.dispatch_one_batch(iterator):
File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py", line 625, in dispatch_one_batch
self._dispatch(tasks)
File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py", line 588, in _dispatch
job = self._backend.apply_async(batch, callback=cb)
File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py", line 111, in apply_async
result = ImmediateResult(func)
File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py", line 332, in __init__
self.results = batch()
File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py", line 131, in __call__
return [func(*args, **kwargs) for func, args, kwargs in self.items]
File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py", line 131, in <listcomp>
return [func(*args, **kwargs) for func, args, kwargs in self.items]
File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/sklearn/ensemble/voting_classifier.py", line 31, in _parallel_fit_estimator
estimator.fit(X, y)
File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/sklearn/calibration.py", line 157, in fit
calibrated_classifier.fit(X, y)
File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/sklearn/calibration.py", line 335, in fit
df, idx_pos_class = self._preproc(X)
File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/sklearn/calibration.py", line 290, in _preproc
df = self.base_estimator.decision_function(X)
File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py", line 527, in decision_function
dec = self._decision_function(X)
File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py", line 384, in _decision_function
X = self._validate_for_predict(X)
File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py", line 437, in _validate_for_predict
check_is_fitted(self, 'support_')
File "/home/ubuntu/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py", line 768, in check_is_fitted
raise NotFittedError(msg % {'name': type(estimator).__name__})
sklearn.exceptions.NotFittedError: This SVC instance is not fitted yet. Call 'fit' with appropriate arguments before using this method.
我的问题是如何解决此错误,或者有其他替代解决方法吗?
谢谢。
答案 0 :(得分:0)
VotingClassifier
将克隆提供的估计量(和本例中的内部估计量),然后尝试将其拟合。但是在CalibratedClassifierCV
中,您使用cv='prefit'
,它假定您已经拟合了估计量。这会导致冲突和此错误。
说明:
VotingClassifier
有两个内部估算器
('svm', svm_isotonic)
,('lr', lr_isotonic)
调用eclf_soft2.fit
时,它将首先clone
和svm_isotonic
lr_isotonic
。克隆这些CalibratedClassifierCV
估计量,然后将克隆其基本估计量clf_svm
和clf_lr
。
此克隆的发生是,仅复制参数值,而不复制从先前对fit()
的调用中获悉的实际属性。因此,基本上您克隆的clf_svm
和clf_lr
现在不适合。
不幸的是,没有一种简单的方法可以为您的用例设置此权限:要适合投票分类器,这又将适合内部calibratedClassifiers,但不适合基本分类器。
但是,如果您只想在两个CalibratedClassifierCV估计器的组合系统上使用VotingClassifier的软投票功能,则可以轻松实现。
从我对类似问题的其他答案中获取想法:
您可以这样做:
import numpy as np
# Define functions
def custom_fit(estimators, X, y):
for clf in estimators:
clf.fit(X, y)
def custom_predict(estimators, X, voting = 'soft', weights = None):
if voting == 'hard':
pred = np.asarray([clf.predict(X) for clf in estimators]).T
pred = np.apply_along_axis(lambda x:
np.argmax(np.bincount(x, weights=weights)),
axis=1,
arr=pred.astype('int'))
else:
pred = np.asarray([clf.predict_proba(X) for clf in estimators])
pred = np.average(pred, axis=0, weights=weights)
pred = np.argmax(pred, axis=1)
return pred
# Use them
estimators=[svm_isotonic, lr_isotonic]
custom_fit(estimators, X_val, y_val)
custom_predict(estimators, X_test)