我正在尝试在Google Cloud ML Engine上部署最近受过训练的Keras模型。我四处搜索以查看所保存的模型对于ML Engine所需的格式,并发现了以下内容:
\
但是,在Keras 2.1.3中,import keras.backend as K
import tensorflow as tf
from keras.models import load_model, Sequential
from tensorflow.python.saved_model import builder as saved_model_builder
from tensorflow.python.saved_model import tag_constants, signature_constants
from tensorflow.python.saved_model.signature_def_utils_impl import predict_signature_def
# reset session
K.clear_session()
sess = tf.Session()
K.set_session(sess)
# disable loading of learning nodes
K.set_learning_phase(0)
# load model
model = load_model('model.h5')
config = model.get_config()
weights = model.get_weights()
new_Model = Sequential.from_config(config)
new_Model.set_weights(weights)
# export saved model
export_path = 'YOUR_EXPORT_PATH' + '/export'
builder = saved_model_builder.SavedModelBuilder(export_path)
signature = predict_signature_def(inputs={'NAME_YOUR_INPUT': new_Model.input},
outputs={'NAME_YOUR_OUTPUT': new_Model.output})
with K.get_session() as sess:
builder.add_meta_graph_and_variables(sess=sess,
tags=[tag_constants.SERVING],
signature_def_map={
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature})
builder.save()
似乎不再具有keras.backend
或clear_session(), set_session()
。解决这个问题的现代方法是什么?这些功能现在存在于其他地方吗?
谢谢!