Python Bokeh饼图颜色,如何更改

时间:2018-10-03 23:35:04

标签: python charts colors bokeh pie-chart

我有一个调色板:

chart_colors = ['#44e5e2', '#e29e44', '#e244db',
                '#d8e244', '#eeeeee', '#56e244', '#007bff', 'black']

还有Bokeh生成的饼图。

x = Counter({
    'Submitted': 179,
    'Approved': 90,
    'Denied': 80
})

data = pd.DataFrame.from_dict(dict(x), orient='index').reset_index().rename(
    index=str, columns={0: 'value', 'index': 'claimNumber'})
data['angle'] = data['value']/sum(x.values()) * 2*pi
data['color'] = Category20c[len(x)]

p = figure(plot_height=200,
           tooltips="@claimNumber: @value",
           name='claimChart')

p.wedge(x=0, y=1, radius=0.28,
        start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
        line_color="white", fill_color='color', legend='claimNumber', source=data)

curdoc().add_root(p)

现在fill_color ='color'并且颜色定义为'data ['color'] = Category20c [len(x)]'。

在较早的版本中,可以提供“颜色”(p.wedge(...,color = ...),但是我使用的是散景0.13.0,因此每种颜色只有fill_color ='color'。

如何将数据['color']更改为'chart_colors'数组的颜色?

1 个答案:

答案 0 :(得分:2)

  

但是我使用的是Bokeh 0.13.0,所以每种颜色只有fill_color ='color'。

这不是事实。 color参数可用于任何字形方法(包括wedge),这是同时设置fill_colorline_color的便利。您的问题有些令人困惑,因为调色板的大小与数据的大小不匹配,但这是一个完整的示例,该示例只是使用了被截断的调色板:

from collections import Counter
from math import pi

import pandas as pd

from bokeh.io import output_file, show
from bokeh.plotting import figure
from bokeh.transform import cumsum

chart_colors = ['#44e5e2', '#e29e44', '#e244db',
                '#d8e244', '#eeeeee', '#56e244', '#007bff', 'black']

x = Counter({
    'Submitted': 179,
    'Approved': 90,
    'Denied': 80
})

data = pd.DataFrame.from_dict(dict(x), orient='index').reset_index().rename(
    index=str, columns={0: 'value', 'index': 'claimNumber'})
data['angle'] = data['value']/sum(x.values()) * 2*pi
data['color'] = chart_colors[:len(x)]

p = figure(plot_height=350, title="Pie Chart", toolbar_location=None)

p.wedge(x=0, y=1, radius=0.28,
        start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
        color='color', legend='claimNumber', source=data)

p.axis.axis_label=None
p.axis.visible=False
p.grid.grid_line_color = None

show(p)

enter image description here