几天来我一直在寻找答案,但无济于事。我可能只是不了解其中漂浮的部分,而multiprocessing
模块上的Python文档相当大,我不清楚。
假设您有以下for循环:
import timeit
numbers = []
start = timeit.default_timer()
for num in range(100000000):
numbers.append(num)
end = timeit.default_timer()
print('TIME: {} seconds'.format(end - start))
print('SUM:', sum(numbers))
输出:
TIME: 23.965870224497916 seconds
SUM: 4999999950000000
在此示例中,您有一个4核处理器。是否有办法总共创建4个进程,每个进程在单独的CPU内核上运行,并且完成速度大约快4倍,所以24s / 4个进程=〜6秒?
以某种方式将for循环分为4个相等的块,然后将这4个块添加到数字列表中以等于相同的总和?有一个stackoverflow线程:Parallel Simple For Loop,但我不明白。谢谢大家。
答案 0 :(得分:2)
是的,这是可行的。您的计算不依赖中间结果,因此您可以轻松地将任务划分为多个块,并将其分布在多个流程中。这就是所谓的
令人尴尬的并行问题。
这里唯一棘手的部分可能是,首先将范围分成相当相等的部分。理顺我的个人lib的两个函数来处理此问题:
# mp_utils.py
from itertools import accumulate
def calc_batch_sizes(n_tasks: int, n_workers: int) -> list:
"""Divide `n_tasks` optimally between n_workers to get batch_sizes.
Guarantees batch sizes won't differ for more than 1.
Example:
# >>>calc_batch_sizes(23, 4)
# Out: [6, 6, 6, 5]
In case you're going to use numpy anyway, use np.array_split:
[len(a) for a in np.array_split(np.arange(23), 4)]
# Out: [6, 6, 6, 5]
"""
x = int(n_tasks / n_workers)
y = n_tasks % n_workers
batch_sizes = [x + (y > 0)] * y + [x] * (n_workers - y)
return batch_sizes
def build_batch_ranges(batch_sizes: list) -> list:
"""Build batch_ranges from list of batch_sizes.
Example:
# batch_sizes [6, 6, 6, 5]
# >>>build_batch_ranges(batch_sizes)
# Out: [range(0, 6), range(6, 12), range(12, 18), range(18, 23)]
"""
upper_bounds = [*accumulate(batch_sizes)]
lower_bounds = [0] + upper_bounds[:-1]
batch_ranges = [range(l, u) for l, u in zip(lower_bounds, upper_bounds)]
return batch_ranges
然后您的主脚本将如下所示:
import time
from multiprocessing import Pool
from mp_utils import calc_batch_sizes, build_batch_ranges
def target_foo(batch_range):
return sum(batch_range) # ~ 6x faster than target_foo1
def target_foo1(batch_range):
numbers = []
for num in batch_range:
numbers.append(num)
return sum(numbers)
if __name__ == '__main__':
N = 100000000
N_CORES = 4
batch_sizes = calc_batch_sizes(N, n_workers=N_CORES)
batch_ranges = build_batch_ranges(batch_sizes)
start = time.perf_counter()
with Pool(N_CORES) as pool:
result = pool.map(target_foo, batch_ranges)
r_sum = sum(result)
print(r_sum)
print(f'elapsed: {time.perf_counter() - start:.2f} s')
请注意,我也将for循环切换为range对象的简单总和,因为它提供了更好的性能。如果您无法在实际应用中做到这一点,列表理解仍然比示例中手动填写列表快60%。
示例输出:
4999999950000000
elapsed: 0.51 s
Process finished with exit code 0
答案 1 :(得分:0)
if (await DisplayAlert("Warning", $"Are you sure you want to delete {book.Author} {book.BookTitle}?", "Yes", "No"))
{
await _connection.DeleteAsync(book);
_booksIWant.Remove(book);
}
因此import timeit
from multiprocessing import Pool
def appendNumber(x):
return x
start = timeit.default_timer()
with Pool(4) as p:
numbers = p.map(appendNumber, range(100000000))
end = timeit.default_timer()
print('TIME: {} seconds'.format(end - start))
print('SUM:', sum(numbers))
类似于内置的Pool.map
函数。它接受一个函数和一个可迭代的函数,并生成一个在可迭代的每个元素上调用该函数的结果的列表。在这里,由于我们实际上并不想更改可迭代范围内的元素,因此只返回参数。
关键是map
将提供的可迭代项(此处为Pool.map
)分成多个块,并将它们发送到它具有的进程数(此处在range(1000000000)
中定义为4)然后将结果重新加入一个列表。
运行此命令时得到的输出是
Pool(4)
答案 2 :(得分:0)
我进行了比较,有时拆分任务所花费的时间可能会更长:
文件 class CAdress {
string street;
string postal;
string city;
public:
CAdress() {
street = "Studentska #1";
postal = "9010";
city = "Varna";
};
CAdress(string st, string pos, string ct) {
street = st;
postal = pos;
city = ct;
}
};
class CStudent : public CPerson2 {
string fn;
CAdress adr;
public:
CStudent() {
fn = "12131547";
}
CStudent(string nm, CAdress add, string egnn) {
name = nm;
//how to give values to the adress?
//add = ?
egn = egnn;
}
};
:
multiprocessing_summation.py
文件 def summation(lst):
sum = 0
for x in range(lst[0], lst[1]):
sum += x
return sum
:
multiprocessing_summation_master.py
运行第二个脚本:
%%file ./examples/multiprocessing_summation_master.py
import multiprocessing as mp
import timeit
import os
import sys
import multiprocessing_summation as mps
if __name__ == "__main__":
if len(sys.argv) == 1:
print(f'{sys.argv[0]} <number1 ...>')
sys.exit(1)
else:
args = [int(x) for x in sys.argv[1:]]
nBegin = 1
nCore = os.cpu_count()
for nEnd in args:
### Approach 1 ####
####################
start = timeit.default_timer()
answer1 = mps.summation((nBegin, nEnd+1))
end = timeit.default_timer()
print(f'Answer1 = {answer1}')
print(f'Time taken = {end - start}')
### Approach 2 ####
####################
start = timeit.default_timer()
lst = []
for x in range(nBegin, nEnd, int((nEnd-nBegin+1)/nCore)):
lst.append(x)
lst.append(nEnd+1)
lst2 = []
for x in range(1, len(lst)):
lst2.append((lst[x-1], lst[x]))
with mp.Pool(processes=nCore) as pool:
answer2 = pool.map(mps.summation, lst2)
end = timeit.default_timer()
print(f'Answer2 = {sum(answer2)}')
print(f'Time taken = {end - start}')
输出为:
python multiprocessing_summation_master.py 1000 100000 10000000 1000000000