我训练了2个模型。
第一个模型是UNet:
print(model_unet.summary())
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_4 (InputLayer) (None, 128, 128, 1) 0
__________________________________________________________________________________________________
conv2d_26 (Conv2D) (None, 128, 128, 32) 320 input_4[0][0]
__________________________________________________________________________________________________
conv2d_27 (Conv2D) (None, 128, 128, 32) 9248 conv2d_26[0][0]
.....
.....
conv2d_44 (Conv2D) (None, 128, 128, 1) 33 zero_padding2d_4[0][0]
==================================================================================================
Total params: 7,846,081
Trainable params: 7,846,081
Non-trainable params: 0
第二个是ResNet:
print(model_resnet.summary())
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_3 (InputLayer) (None, 128, 128, 3) 0
__________________________________________________________________________________________________
conv1_pad (ZeroPadding2D) (None, 134, 134, 3) 0 input_3[0][0]
....
....
conv2d_25 (Conv2D) (None, 128, 128, 3) 99 zero_padding2d_3[0][0]
==================================================================================================
Total params: 24,186,915
Trainable params: 24,133,795
Non-trainable params: 53,120
UNet有1个通道(灰色),ResNet有3个通道。
然后,我正在尝试创建一个集成模型:
def ensemble(models, models_input):
outputs = [model(models_input[idx]) for idx, model in enumerate(models)]
x = Average()(outputs)
model_inputs = [model for model in models_input]
model = Model(model_inputs, x)
return model
models = [model_unet, model_resnet]
models_input = [Input((128,128,1)), Input((128,128, 3))]
ensemble_model = ensemble(models, models_input)
当我尝试预测验证数据时:
pred_val = ensemble_model.predict(X_val)
我收到错误:
Error when checking model input: the list of Numpy arrays that you are passing to your model is not the size the model expected. Expected to see 2 array(s), but instead got the following list of 1 arrays: [array([[[[0.46755977],
[0.52268691],
[0.52766109],
....
X_val.shape is : (800, 128, 128, 1)
我认为问题是渠道,但我不知道该如何克服。
答案 0 :(得分:2)
如果您的训练数据是灰度图像,并且考虑到ResNet模型将RGB图像作为输入RGB图像,那么您应该问自己:如何将灰度图像转换为RGB?一个答案是将灰度图像重复3次以获得RBG图像。然后,您可以轻松地使用一个输入层定义一个模型,该模型将获取灰度图像并将其相应地馈送到您定义的模型中:
from keras import backend as K
input_image = Input(shape=(128,128,1))
unet_out = model_unet(input_image)
rgb_image = Lambda(lambda x: K.repeat_elements(x, 3, -1))(input_image)
resnet_out = model_resnet(rgb_image)
output = Average()([unet_out, resnet_out])
ensemble_model = Model(input_image, output)
然后,您可以使用一个输入数组轻松调用predict
:
pred_val = ensemble_model.predict(X_val)
该解决方案的一种替代方法是使用您在问题中使用的解决方案。但是,您首先需要将图像从灰度转换为RGB,然后将两个数组都传递给predict
方法:
X_val_rgb = np.repeat(X_val, 3, -1)
pred_val = ensemble_model.predict([X_val, X_val_rgb])