我想使用Python Pandas从csv文件中删除重复记录 CSV包含具有三个属性scale(最小缩放,最大缩放)的记录。我想要一个具有minzoom和maxzoom的结果数据框,并且记录保持唯一性
即
输入CSV文件(lookup_scales.csv)
Scale, minzoom, maxzoom
2000, 0, 15
3000, 0, 15
10000, 8, 15
20000, 8, 15
200000, 15, 18
250000, 15, 18
必需的distinct_lookup_scales.csv(无比例列)
minzoom, maxzoom
0,5
8,15
15,18
到目前为止,我的代码是
lookup_scales_df = pd.read_csv('C:/Marine/lookup/lookup_scales.csv', names = ['minzoom','maxzoom'])
lookup_scales_df = lookup_scales_df.set_index([2, 3])
file_name = "C:/Marine/lookup/distinct_lookup_scales.csv"
lookup_scales_df.groupby('minzoom', 'maxzoom').to_csv(file_name, sep=',')
非常感谢您的帮助。我是熊猫新手,正在使用数据框
答案 0 :(得分:2)
在使用熊猫导入csv时,您不需要numpy或只需要一行即可完成unique-ify的任何事情:
import pandas as pd
df = pd.read_csv('lookup_scales.csv', usecols=['minzoom', 'maxzoom']).drop_duplicates(keep='first').reset_index()
输出:
minzoom maxzoom
0 0 15
1 8 15
2 15 18
然后将其写到csv:
df.to_csv(file_name, index=False) # you don't need to set sep in this because to_csv makes it comma delimited.
整个代码:
import pandas as pd
df = pd.read_csv('lookup_scales.csv', usecols=['minzoom', 'maxzoom']).drop_duplicates(keep='first').reset_index()
file_name = "C:/Marine/lookup/distinct_lookup_scales.csv"
df.to_csv(file_name, index=False) # you don't need to set sep in this because to_csv makes it comma delimited.
答案 1 :(得分:1)
您可以使用pd.read_csv()
,pd.to_csv()
和drop_duplicates()
:
import pandas as pd
df = pd.read_csv('test.csv', sep=', ', engine='python')
new_df = df[['minzoom','maxzoom']].drop_duplicates()
new_df.to_csv('out.csv', index=False)
输出到out.csv
:
minzoom,maxzoom
0,15
8,15
15,18
在阅读sep=', '
时请注意test.csv
,否则,如果保留默认的sep=','
,则您的列名将带有前导空格。
答案 2 :(得分:0)
答案完全错误。在保持其他列完好无损的情况下,正确的方法是替换h
#df = pd.read_csv('yourcsvfilehere.csv').drop_duplicates('columnnamehere',keep='first')