我正在使用hyperas document example来调整网络参数,但是基于f1得分而不是准确性。
我正在将以下实现用于f1得分:
from keras import backend as K
def f1(y_true, y_pred):
def recall(y_true, y_pred):
"""Recall metric.
Only computes a batch-wise average of recall.
Computes the recall, a metric for multi-label classification of
how many relevant items are selected.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def precision(y_true, y_pred):
"""Precision metric.
Only computes a batch-wise average of precision.
Computes the precision, a metric for multi-label classification of
how many selected items are relevant.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
precision = precision(y_true, y_pred)
recall = recall(y_true, y_pred)
return 2*((precision*recall)/(precision+recall+K.epsilon()))
在以下代码行中更新用于编译功能的度量参数:
model.compile(loss='categorical_crossentropy', metrics=['accuracy'],
optimizer={{choice(['rmsprop', 'adam', 'sgd'])}})
到
model.compile(loss='categorical_crossentropy', metrics=[f1],
optimizer={{choice(['rmsprop', 'adam', 'sgd'])}})
上述指标在不使用hyperas的情况下也可以完美运行,而当我尝试在调整过程中使用它时,出现以下错误:
Traceback (most recent call last):
File "D:/path/test.py", line 96, in <module>
trials=Trials())
File "C:\Python35\lib\site-packages\hyperas\optim.py", line 67, in minimize
verbose=verbose)
File "C:\Python35\lib\site-packages\hyperas\optim.py", line 133, in base_minimizer
return_argmin=True),
File "C:\Python35\lib\site-packages\hyperopt\fmin.py", line 367, in fmin
return_argmin=return_argmin,
File "C:\Python35\lib\site-packages\hyperopt\base.py", line 635, in fmin
return_argmin=return_argmin)
File "C:\Python35\lib\site-packages\hyperopt\fmin.py", line 385, in fmin
rval.exhaust()
File "C:\Python35\lib\site-packages\hyperopt\fmin.py", line 244, in exhaust
self.run(self.max_evals - n_done, block_until_done=self.asynchronous)
File "C:\Python35\lib\site-packages\hyperopt\fmin.py", line 218, in run
self.serial_evaluate()
File "C:\Python35\lib\site-packages\hyperopt\fmin.py", line 137, in serial_evaluate
result = self.domain.evaluate(spec, ctrl)
File "C:\Python35\lib\site-packages\hyperopt\base.py", line 840, in evaluate
rval = self.fn(pyll_rval)
File "D:\path\temp_model.py", line 86, in keras_fmin_fnct
NameError: name 'f1' is not defined
答案 0 :(得分:2)
如果您遵循链接到的代码示例,则不会使Hyperas意识到自定义f1函数。程序包作者也提供了example to do that。
简而言之,您需要在$db = new mysqli("localhost","paroshic_paroshic","kxmcwQzLTrTR","paroshic_matri2018jl");
$sql = "select * from tbldatingusermaster order by userid desc";
$result = $db->query( $sql );
if( $result ){
while( $data = $result->fetch_object() ){
/* explode the string into little integers */
$ids=explode( ',', $data->educationid );
/* iterate through the pieces and generate an input[checkbox] element */
foreach( $ids as $id )printf('<input type="checkbox" name="UNKNOWN[]" value="%s" />',$id);
}
}
调用中添加一个附加的functions
参数。像
optim.minimize()
我实际上实际上是在今天实现的,所以我相信您也可以使用它:)