我想生成一个大小为M的浮点数列表,其中列表中的每个项目都比其他后续项目(即降序)大。并且列表的总和必须为1。对于相同的M幅值,我可以生成多个服从给定约束的列表。
我正在考虑以下形式的方程式:
Xi+1 = compute([Xi,Xi-1...X0], M, Random)
但是我无法弄清楚这个功能的范围。预先谢谢你。
答案 0 :(得分:4)
好的,让我们从0到10中选择10个随机数,并对它们进行排序。然后计算总和并用每个元素除以总和重建一个新列表:
import random
# create a non-normalized ascending list of numbers
lst = sorted(random.uniform(0,10) for _ in range(10))
# compute the sum
temp_sum = sum(lst)
# now divide each member by the sum to normalize the list
lst = [i/temp_sum for i in lst]
print(lst,sum(lst))
一个输出可能是:
[0.0340212528820301, 0.05665995400192079, 0.07733861892990018,
0.07752841352220373, 0.08556431469182045, 0.11628857362899164,
0.11706017358757258, 0.12523809404875455, 0.14272942597136748,
0.16757117873543856] 1.0
由于浮点数的误差,总和可能不完全为1,但是非常接近。
答案 1 :(得分:2)
如果您想要数学上可以预测的东西...
def makeDescendingUnitArray(length: int):
if (not isinstance(length, int)) or (length < 1):
raise ValueError("Array Length must be an int with a value of at least 1")
if length == 1:
return [1]
else:
constant = 1
output = list()
for x in range(length - 2):
constant /= 2
output.append(constant)
return output + [2*constant/3, constant/3]
for arrayLength in range(1, 10):
array = makeDescendingUnitArray(arrayLength)
print(array)
产生以下数组...
[1]
[0.6666666666666666, 0.3333333333333333]
[0.5, 0.3333333333333333, 0.16666666666666666]
[0.5, 0.25, 0.16666666666666666, 0.08333333333333333]
[0.5, 0.25, 0.125, 0.08333333333333333, 0.041666666666666664]
[0.5, 0.25, 0.125, 0.0625, 0.041666666666666664, 0.020833333333333332]
[0.5, 0.25, 0.125, 0.0625, 0.03125, 0.020833333333333332, 0.010416666666666666]
[0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.010416666666666666, 0.005208333333333333]
[0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125, 0.005208333333333333, 0.0026041666666666665]
答案 2 :(得分:1)
如果您想要一个数学上可预测的单线飞机,那就是... (循环显示您的外观)
for length in range(1, 10):
array = [2*x/(length * (length + 1)) for x in range(length,0,-1)]
print(sum(array), array)
这将产生以下输出。注意,这与所有其他算法一样容易受到浮点舍入误差的影响。有一些更好或更坏的算法,但是在某些时候,它们都会有一些错误。
Sum: 1.0 Array: [1.0]
Sum: 1.0 Array: [0.6666666666666666, 0.3333333333333333]
Sum: 0.9999999999999999 Array: [0.5, 0.3333333333333333, 0.16666666666666666]
Sum: 0.9999999999999999 Array: [0.4, 0.3, 0.2, 0.1]
Sum: 1.0 Array: [0.3333333333333333, 0.26666666666666666, 0.2, 0.13333333333333333, 0.06666666666666667]
Sum: 0.9999999999999998 Array: [0.2857142857142857, 0.23809523809523808, 0.19047619047619047, 0.14285714285714285, 0.09523809523809523, 0.047619047619047616]
Sum: 1.0 Array: [0.25, 0.21428571428571427, 0.17857142857142858, 0.14285714285714285, 0.10714285714285714, 0.07142857142857142, 0.03571428571428571]
Sum: 1.0 Array: [0.2222222222222222, 0.19444444444444445, 0.16666666666666666, 0.1388888888888889, 0.1111111111111111, 0.08333333333333333, 0.05555555555555555, 0.027777777777777776]
Sum: 0.9999999999999999 Array: [0.2, 0.17777777777777778, 0.15555555555555556, 0.13333333333333333, 0.1111111111111111, 0.08888888888888889, 0.06666666666666667, 0.044444444444444446, 0.022222222222222223]