我想绘制多年以来与日相关的数据,其中年份应在x轴上(例如2016、2017、2018)。这样做有什么好的方法?
对于每一年,我都有一份要在x轴上绘制的天数列表,但是python保留了该轴,并绘制了彼此不同年份的所有数据。
有什么建议吗?
代码:
我的字典L_B_1_mean
的简化版本如下:
2016018 5.68701407589
2016002 4.72437644462
2017018 3.39389424822
2018034 7.01093439059
2018002 8.79958946488
2017002 3.55897852367
代码:
data_plot = {"x":[], "y":[], "label":[]}
for label, coord in L_B_1_mean.items():
data_plot["x"].append(int(label[-3:]))
data_plot["y"].append(coord)
data_plot["label"].append(label)
# add labels
for label, x, y in zip(data_plot["label"], data_plot["x"], data_plot["y"]):
axes[1].annotate(label, xy = (x, y+0.02), ha= "left")
# 1 channel different years Plot
plt_data = axes[1].scatter(data_plot["x"], data_plot["y"])
我在这里构建我的x值:data_plot["x"].append(int(label[-3:]))
,在其中我读取名称标签,例如:2016002,仅获取日值:002
最终,我每年有365天,现在我想绘制2016年,2017年和2018年的数据,而不是一个个地叠加
答案 0 :(得分:0)
You have a dict
L_B_1_mean
{'2016018': 5.68701407589,
'2016002': 4.72437644462,
'2017018': 3.39389424822,
'2018034': 7.010934390589999,
'2018002': 8.79958946488,
'2017002': 3.55897852367}
plot using pandas:
import pandas as pd
You can simply create a pandas series from this dict:
s = pd.Series(L_B_1_mean)
2016018 5.687014
2016002 4.724376
2017018 3.393894
2018034 7.010934
2018002 8.799589
2017002 3.558979
dtype: float64
...and cast the strings in the index to dates:
s.index = pd.to_datetime(s.index, format='%Y%j')
2016-01-18 5.687014
2016-01-02 4.724376
2017-01-18 3.393894
2018-02-03 7.010934
2018-01-02 8.799589
2017-01-02 3.558979
dtype: float64
Then you can plot your data easily:
s.plot(marker='o')
plot using datetime and matplotlib:
import datetime as DT
import matplotlib.pyplot as plt
t = [DT.datetime.strptime(k, '%Y%j') for k in L_B_1_mean.keys()]
v = list(L_B_1_mean.values())
v = sorted(v, key=lambda x: t[v.index(x)])
t = sorted(t)
plt.plot(t, v, 'b-o')