我有一个熊猫数据框,如下所示:
ID Value
1 2
2 6
3 3
4 5
我想要一个提供
的新数据框 ID Value
1 0
1 1
1 2
2 0
2 1
2 2
2 3
2 4
2 5
2 6
3 1
3 2
3 3
3 4
任何建议都将不胜感激。
答案 0 :(得分:3)
将reindex
与repeat
和cumcount
结合使用以获取新值
df.reindex(df.index.repeat(df.Value+1)).assign(Value=lambda x : x.groupby('ID').cumcount())
Out[611]:
ID Value
0 1 0
0 1 1
0 1 2
1 2 0
1 2 1
1 2 2
1 2 3
1 2 4
1 2 5
1 2 6
2 3 0
2 3 1
2 3 2
2 3 3
3 4 0
3 4 1
3 4 2
3 4 3
3 4 4
3 4 5
答案 1 :(得分:2)
尝试
new_df = df.groupby('ID').Value.apply(lambda x: pd.Series(np.arange(x+1)))\
.reset_index().drop('level_1', 1)
ID Value
0 1 0
1 1 1
2 1 2
3 2 0
4 2 1
5 2 2
6 2 3
7 2 4
8 2 5
9 2 6
10 3 0
11 3 1
12 3 2
13 3 3
14 4 0
15 4 1
16 4 2
17 4 3
18 4 4
19 4 5
答案 2 :(得分:2)
使用stack
和列表理解:
vals = [np.arange(i+1) for i in df.Value]
(pd.DataFrame(vals, index=df.ID)
.stack().reset_index(1, drop=True).astype(int).to_frame('Value'))
Value
ID
1 0
1 1
1 2
2 0
2 1
2 2
2 3
2 4
2 5
2 6
3 0
3 1
3 2
3 3
4 0
4 1
4 2
4 3
4 4
4 5