多种模式的变量

时间:2018-10-01 18:09:00

标签: r variables mode

我似乎找不到解决我问题的答案。

这是示例数据

Credit Card Type  Bank   Year   Total Balance
MASTER CARD       BOFA   2017   $100
MASTER CARD       BOFA   2017   $100
MASTER CARD       BOFA   2017   $700
VISA              Wells  2018   $60 
VISA              Wells  2018   $50
VISA              Wells  2018   $60

我正在尝试找出如何通过所有变量的总余额获得模式 所以最终会像这样

所需的输出:

Credit Card Type  Bank   Year   Mode
MASTER CARD       BOFA   2017   $100
VISA              Wells  2018   $60

4 个答案:

答案 0 :(得分:1)

按照弗兰克的建议,使用stackoverflow.com/q/2547402中的Mode,使用dplyr很容易。

library(dplyr)

df %>% 
    group_by(CreditCardType, Bank, Year) %>%
    summarise(mode = Mode(TotalBalance))

df在哪里:

df <- read.table(text = 'CreditCardType  Bank   Year   TotalBalance
MASTERCARD       BOFA   2017   $100
MASTERCARD       BOFA   2017   $100
MASTERCARD       BOFA   2017   $700
VISA              Wells  2018   $60 
VISA              Wells  2018   $50
VISA              Wells  2018   $60', header = T, stringsAsFactors = F)

答案 1 :(得分:1)

这个问题obtaining 3 most common elements of groups, concatenating ties, and ignoring less common values

library(plyr)
getmode<- function(origtable,groupby,columnname) {
  data <- ddply (origtable, groupby, .fun = function(xx){
    c(m1 = paste(names(sort(table(xx[,columnname]),decreasing=TRUE)[1]))
    ) } ) 
  return(data)
}

getmode(df,c("CreditCardType","Bank","Year"),"TotalBalance")

df<-read.table(text="CreditCardType  Bank   Year   TotalBalance
MASTERCARD       BOFA   2017   $100
MASTERCARD       BOFA   2017   $100
MASTERCARD       BOFA   2017   $700
VISA              Wells  2018   $60 
VISA              Wells  2018   $50
VISA              Wells  2018   $60", header=T, stringsAsFactors=F)

答案 2 :(得分:1)

另一种dplyr解决方案:

df %>%
  add_count(Credit_Card_Type, Bank, Year, Total_Balance) %>%
  filter(n == max(n)) %>%
  distinct() %>%
  select(-n)

考虑关系并选择第一个模式值:

df %>%
  add_count(Credit_Card_Type, Bank, Year, Total_Balance) %>%
  filter(n == max(n)) %>%
  distinct() %>%
  select(-n) %>%
  group_by(Credit_Card_Type, Bank, Year) %>%
  summarise(Total_Balance = first(Total_Balance))

数据:

df <- read.table(text = "Credit_Card_Type Bank Year Total_Balance
           MASTER_CARD BOFA 2017 100
           MASTER_CARD BOFA 2017 100
           MASTER_CARD BOFA 2017 700
           VISA Wells 2018 60
           VISA Wells 2018 50
           VISA Wells 2018 60", header = TRUE)

答案 3 :(得分:1)

我找到了使用data.table和最适度的软件包的解决方案。

library(data.table)
library(modeest)
dt <- data.table("Type"=c(rep("MASTERCARD",3),rep("VISA",3)),"Bank"=c(rep("BOFA",3),rep("Wells",3)),"Year"=c(rep(2017,3),rep(2018,3)),"TotalBalance"=c(100,100,700,60,50,60))
dt[,mfv(TotalBalance)[1],by=c("Type","Bank","Year")]

          Type  Bank Year  V1
 1: MASTERCARD  BOFA 2017 100
 2:       VISA Wells 2018  60