我有一个这样的数据框
ID content
1 hello you how are you
1 you are ok
2 test
我需要按ID来获取内容中空格分隔的每个单词的频率。基本上是在该列中找到唯一项,并找到按ID分组的频率和显示
ID hello you how are ok test
1 1 3 1 2 1 0
2 0 0 0 0 0 1
我尝试了
test<- unique(unlist(strsplit(temp$val, split=" ")))
df<- cbind(temp, sapply(test, function(y) apply(temp, 1, function(x) as.integer(y %in% unlist(strsplit(x, split=" "))))))
这提供了我现在要分组的未分组解决方案,但是我在内容中具有超过20000个唯一值,是否有一种有效的方法来做到这一点?
答案 0 :(得分:1)
您可以使用data.table
library(data.table)
setDT(df1)[, unlist(strsplit(content, split = " ")), by = ID
][, dcast(.SD, ID ~ V1)]
# ID are hello how ok test you
#1: 1 2 1 1 1 0 3
#2: 2 0 0 0 0 1 0
在第一部分中,我们按unlist(strsplit(content, split = " "))
组使用ID
,它给出以下输出:
# ID V1
#1: 1 hello
#2: 1 you
#3: 1 how
#4: 1 are
#5: 1 you
#6: 1 you
#7: 1 are
#8: 1 ok
#9: 2 test
下一步,我们使用dcast
将数据扩展为宽格式。
数据
df1 <- structure(list(ID = c(1L, 1L, 2L), content = c("hello you how are you",
"you are ok", "test")), .Names = c("ID", "content"), class = "data.frame", row.names = c(NA,
-3L))
答案 1 :(得分:1)
用于文本挖掘的程序包怎么样?
# your data
text <- read.table(text = "
ID content
1 'hello you how are you'
1 'you are ok'
2 'test'", header = T, stringsAsFactors = FALSE) # remember the stringAsFactors life saver!
library(dplyr)
library(tidytext)
# here we put in column all the words
unnested <- text %>%
unnest_tokens(word, content)
# a classic data.frame from a table of frequencies
as.data.frame.matrix(table(unnested$ID, unnested$word))
are hello how ok test you
1 2 1 1 1 0 3
2 0 0 0 0 1 0