循环逻辑可将2D数组值存储在一个线性矢量中

时间:2018-09-28 10:49:20

标签: c++ vector c++14

我有一个要求,我需要将2个轴值存储到线性向量中,有些值[x = 0] [y = 1]和[y = 0] [x = 1]我知道如何保存< / p>

我只是添加了i + j来查找索引,但是现在它在所有情况下都可以工作

我有0> = x <= 200和0> = y <= 103

其中x增量x = x + 1       y增量y = y + 1.5

我可以导出任何通用公式来线性保存所有数据

3 个答案:

答案 0 :(得分:1)

vector_1d_index = vector_2d_row_index * vector_2d_row_length + vector_2d_column_index

...假设您的2D向量是i)行大和ii)矩形(等长行)。

({vector_1d_size = vector_2d_row_count * vector_2d_row_length)。

答案 1 :(得分:0)

您的描述含糊。但是我可以收集的是,您正在寻求将二维索引中的值存储在一维数组中。通用技术是使用类似如下的方法:

假设row, col是二维索引坐标

<1-d index> = <max number of columns> * row + col

答案 2 :(得分:0)

如果我没看错的话,您想要一种在C ++中存储2D浮点索引数组的方法。您将需要进行一些转换,因为C ++“仅支持1D数组”(严格来说并非如此,但我们会假装确实如此)。

首先,我们需要知道范围和增量。您提供了它们,对于X,范围分别为[0, 200],对于Y,[0, 103]的范围分别为11.5

这意味着我们有((200-0)/1) = 200个可能的X值和((103-0)/1.5) = 68.666...个Y的可能值。我们将为Y选择69个可能的值。

所以,我们可以有以下数组:

int my_array_of_ints[69 * 200];

例如,项目[X=0][Y=0]将是我们的[0 * 69 + 0]索引(项目my_array_of_ints[0]),而我们的[X=1][Y=1.5]将是我们的[1 * 69 + 1]索引(项目{ {1}})。请注意,因为Y增量固定为1.5(即Y必须为0或1.5或3或4.5或6或...),所以我们不能使用[Y = 0.5]或[Y = 1]的项。

用于将2D索引转换为1D线性索引的函数为:

my_array_of_ints[70]

位置:

  • #include <cmath> int get_element(float x, float y){ int index_x = std::round(x / 1); int index_y = std::round(y / 1.5); if ((0 <= index_x) && (index_x < 200) && (0 <= index_y) && (index_y < 69)){ return my_array_of_ints[index_y * 200 + index_x]; } else { // You should decide what to do if x or y is out-of-range return 0; } } 是x的增量
  • 1是y的增量
  • 1.5是该范围内具有此增量的x的可能值的数量
  • 200是该范围内具有此增量的y的可能值的数量。

所以我们可以做这样的事情:

69

它将返回get_element(1, 1.5) [X=1][Y=1.5]的值。

将此代码包装在一个类上,对数组的类型进行模板化,对范围和增量进行概括,并提供一个虚拟的main:

my_array_of_ints

输出:

#include <cmath>
#include <iostream>

template <typename Datatype> class Vector2D {
    float x_increment;
    float x_minimum;
    float x_maximum;

    float y_increment;
    float y_minimum;
    float y_maximum;

    // For example, Y range [0, 103] with increment 1.5
    // results in 69 possibles values for Y, and we need to
    // remember to "linearize" the indexes
    int x_possibles;
    int y_possibles;

    Datatype *array;
    public:
    Vector2D(float x_increment, float y_increment,
             float x_maximum, float y_maximum,
             float x_minimum=0, float y_minimum=0)
        : x_increment(x_increment), x_minimum(x_minimum),
          x_maximum(x_maximum), y_increment(y_increment),
          y_minimum(y_minimum), y_maximum(y_maximum),

          // These two may seem arcane, but they are the
          // generalization of how we found the values initially
          x_possibles(std::ceil((x_maximum-x_minimum)/x_increment)),
          y_possibles(std::ceil((y_maximum-y_minimum)/y_increment)),
          array(new Datatype[y_possibles * x_possibles]) {

        // This may help to understand this 2D Vector
        std::cout << "Creating 2D vector X in range ["
            << x_minimum << ", " << x_maximum
            << "] with increment of " << x_increment
            << " (totalizing " << x_possibles
            << " possible values for x) "
            << " and Y in range [" << y_minimum
            << ", " << y_maximum << "] with increment of "
            << y_increment << " (totalizing " << y_possibles
            << " values for y)."
            << std::endl;
    }

    // Frees up the raw array
    ~Vector2D(){
        delete this->array;
    }

    Datatype& get_element(float x, float y){
        int index_x = std::round((x-x_minimum)/this->x_increment);
        int index_y = std::round((y-y_minimum)/this->y_increment);

        // This debug message may help understand this function
        // It is, in some sense, the answer of this question
        std::cout << "The 2D point [X=" << x << ", Y=" << y
                  <<  "] is mapped into the vector index ["
                  << index_y << " * " << x_possibles
                  << " + " << index_x << "]" << std::endl;

        if ((0 <= index_x) && (index_x < x_possibles) &&
            (0 <= index_y) && (index_y < y_possibles)){
            return this->array[index_y * x_possibles + index_x];
        } else {
            // You should decide what to do if x or y is out-of-range
            return this->array[0];
        }
    }
};


int main(){
    // And you could use that class like this:

    // A 2D-like vector with X [0, 200] inc. 1
    // and Y [0, 103] inc. 1.5 of floats
    Vector2D<float> my_data(1, 1.5, 200, 103, 0, 0);

    // Sets [X=1][Y=1] to 0.61345
    my_data.get_element(1, 1) = 0.61345;

    auto elem1 = my_data.get_element(1, 1);
    // Prints the [X=1][Y=1] to screen
    std::cout << "[X=1][Y=1] is "
              << elem1
              << std::endl;

    // Gets a few more interesting points
    my_data.get_element(0, 0);
    my_data.get_element(1, 1.5);
    my_data.get_element(10, 15);
    my_data.get_element(200, 103);

    // A separator
    std::cout << "---" << std::endl;

    // Another example, this time using chars
    // X is [-10, 1] inc. 0.1 and Y is [-5, 3] inc. 0.05
    Vector2D<char> my_chars(0.1, 0.05, 1, 3, -10, -5);

    // Sets [X=-4.3][Y=2.25] to '!'
    my_chars.get_element(-4.3, 2.25) = '!';

    auto elem2 = my_chars.get_element(-4.3, 2.25);
    std::cout << "[X=-4.3][Y=2.25] is "
              << elem2
              << std::endl;

}

希望有帮助。