我正在寻找一种使用可选输入创建Keras模型的方法。在原始TensorFlow中,您可以使用以下可选输入创建占位符:
import numpy as np
import tensorflow as tf
def main():
required_input = tf.placeholder(
tf.float32,
shape=(None, 2),
name='required_input')
default_optional_input = tf.random_uniform(
shape=(tf.shape(required_input)[0], 3))
optional_input = tf.placeholder_with_default(
default_optional_input,
shape=(None, 3),
name='optional_input')
output = tf.concat((required_input, optional_input), axis=-1)
with tf.Session() as session:
with_optional_input_output_np = session.run(output, feed_dict={
required_input: np.random.uniform(size=(4, 2)),
optional_input: np.random.uniform(size=(4, 3)),
})
print(f"with optional input: {with_optional_input_output_np}")
without_optional_input_output_np = session.run(output, feed_dict={
required_input: np.random.uniform(size=(4, 2)),
})
print(f"without optional input: {without_optional_input_output_np}")
if __name__ == '__main__':
main()
以类似的方式,我希望能够为我的Keras模型提供可选输入。似乎keras.layers.Input.__init__中的tensor
参数可能正是我想要的,但至少它没有按我的期望工作(即与显示的tf.placeholder_with_default
相同)以上)。这是一个中断的示例:
import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
def create_model(output_size):
required_input = tf.keras.layers.Input(
shape=(13, ), dtype='float32', name='required_input')
batch_size = tf.shape(required_input)[0]
def sample_optional_input(inputs, batch_size=None):
base_distribution = tfp.distributions.MultivariateNormalDiag(
loc=tf.zeros(output_size),
scale_diag=tf.ones(output_size),
name='sample_optional_input')
return base_distribution.sample(batch_size)
default_optional_input = tf.keras.layers.Lambda(
sample_optional_input,
arguments={'batch_size': batch_size}
)(None)
optional_input = tf.keras.layers.Input(
shape=(output_size, ),
dtype='float32',
name='optional_input',
tensor=default_optional_input)
concat = tf.keras.layers.Concatenate(axis=-1)(
[required_input, optional_input])
dense = tf.keras.layers.Dense(
output_size, activation='relu')(concat)
model = tf.keras.Model(
inputs=[required_input, optional_input],
outputs=[dense])
return model
def main():
model = create_model(output_size=3)
required_input_np = np.random.normal(size=(4, 13))
outputs_np = model.predict({'required_input': required_input_np})
print(f"outputs_np: {outputs_np}")
required_input = tf.random_normal(shape=(4, 13))
outputs = model({'required_input': required_input})
print(f"outputs: {outputs}")
if __name__ == '__main__':
main()
对model.predict
的第一次调用似乎给出了正确的输出,但是由于某些原因,直接调用模型失败,并出现以下错误:
ValueError:图层模型需要2个输入,但收到1个输入张量。收到的输入:[]
是否可以像上面的示例中那样,使用tensor
中的Input.__init__
参数来实现Keras模型的可选输入?如果是,我应该在示例中进行哪些更改以使其正确运行?如果没有,在Keras中创建可选输入的预期方式是什么?
答案 0 :(得分:4)
我真的认为,没有解决方法是不可能的。 Keras并不是为了这个目的。
但是,注意到您在每种情况下都使用了两个不同的session.run
命令,因此似乎很容易使用两个模型来完成。一种模型使用可选输入,另一种则不使用。您可以选择使用哪个呼叫方式来选择呼叫session.run()
的方式。
也就是说,您可以使用Input(tensor=...)
或仅在Lambda
层内创建可选输入。这两件事都很好。但是不要使用Input(shape=..., tensor=...)
,它们是多余的参数,有时Keras不能很好地处理这种冗余。
理想情况下,将所有操作都保留在Lambda
层内,甚至包括tf.shape
操作。
说:
required_input = tf.keras.layers.Input(
shape=(13, ), dtype='float32', name='required_input')
#needs the input for the case you want to pass it:
optional_input_when_used = tf.keras.layers.Input(shape=(output_size,))
#operations should be inside Lambda layers
batch_size = Lambda(lambda x: tf.shape(x)[0])(required_input)
#updated for using the batch size coming from lambda
#you didn't use "inputs" anywhere in this function
def sample_optional_input(batch_size):
base_distribution = tfp.distributions.MultivariateNormalDiag(
loc=tf.zeros(output_size),
scale_diag=tf.ones(output_size),
name='sample_optional_input')
return base_distribution.sample(batch_size)
#updated for using the batch size as input
default_optional_input = tf.keras.layers.Lambda(sample_optional_input)(batch_size)
#let's skip the concat for now - notice I'm not "using" this layer yet
dense_layer = tf.keras.layers.Dense(output_size, activation='relu')
#you could create the rest of the model here if it's big, so you don't create it twice
#(check the final section of this answer)
使用传递的输入进行建模:
concat_when_used = tf.keras.layers.Concatenate(axis=-1)(
[required_input, optional_input_when_used]
)
dense_when_used = dense_layer(concat_when_used)
#or final_part_of_the_model(concat_when_used)
model_when_used = Model([required_input, optional_input_when_used], dense_when_used)
模型未使用可选输入:
concat_not_used = tf.keras.layers.Concatenate(axis=-1)(
[required_input, default_optional_input]
)
dense_not_used = dense_layer(concat_not_used)
#or final_part_of_the_model(concat_not_used)
model_not_used = Model(required_input, dense_not_used)
可以创建两个这样的模型并选择一个使用(两个模型共享最后一层,因此它们将始终一起训练)是可以的
现在,在选择session.run
的那一点上,现在您将选择要使用的模型:
model_when_used.predict([x1, x2])
model_when_used.fit([x1,x2], y)
model_not_used.predict(x)
model_not_used.fit(x, y)
如果最后的部分很大,则您将不希望两次调用所有内容来创建两个模型。在这种情况下,请首先创建一个最终模型:
input_for_final = Input(shape_after_concat)
out = Dense(....)(input_for_final)
out = Dense(....)(out)
out = Dense(....)(out)
.......
final_part_of_the_model = Model(input_for_final, out)
然后在上一个答案中使用此最后一部分。
dense_when_used = final_part_of_the_model(concat_when_used)
dense_not_used = final_part_of_the_model(concat_not_used)