我们正在尝试运行一个简单的DAG,其中包含2个任务,这些任务将通过xcom进行数据通信。
DAG文件:
from __future__ import print_function
import airflow
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from airflow.operators.python_operator import PythonOperator
args = {
'owner': 'airflow',
'start_date': airflow.utils.dates.days_ago(2)
}
dag = DAG(
'example_xcom',
schedule_interval="@once",
default_args=args)
value_1 = [1, 2, 3]
def push(**kwargs):
# pushes an XCom without a specific target
kwargs['ti'].xcom_push(key='value from pusher 1', value=value_1)
def puller(**kwargs):
ti = kwargs['ti']
v1 = ti.xcom_pull(key=None, task_ids='push')
assert v1 == value_1
v1 = ti.xcom_pull(key=None, task_ids=['push'])
assert (v1) == (value_1)
push1 = PythonOperator(
task_id='push', dag=dag, python_callable=push)
pull = BashOperator(
task_id='also_run_this',
bash_command='echo {{ ti.xcom_pull(task_ids="push_by_returning") }}',
dag=dag)
pull.set_upstream(push1)
但是在气流中运行DAG时,我们遇到以下异常。
[2018-09-27 16:55:33,431] {base_task_runner.py:98} INFO - Subtask: [2018-09-27 16:55:33,430] {models.py:189} INFO - Filling up the DagBag from /home/airflow/gcs/dags/xcom.py
[2018-09-27 16:55:33,694] {base_task_runner.py:98} INFO - Subtask: Traceback (most recent call last):
[2018-09-27 16:55:33,694] {base_task_runner.py:98} INFO - Subtask: File "/usr/local/bin/airflow", line 27, in <module>
[2018-09-27 16:55:33,696] {base_task_runner.py:98} INFO - Subtask: args.func(args)
[2018-09-27 16:55:33,697] {base_task_runner.py:98} INFO - Subtask: File "/usr/local/lib/python2.7/site-packages/airflow/bin/cli.py", line 392, in run
[2018-09-27 16:55:33,697] {base_task_runner.py:98} INFO - Subtask: pool=args.pool,
[2018-09-27 16:55:33,698] {base_task_runner.py:98} INFO - Subtask: File "/usr/local/lib/python2.7/site-packages/airflow/utils/db.py", line 50, in wrapper
[2018-09-27 16:55:33,699] {base_task_runner.py:98} INFO - Subtask: result = func(*args, **kwargs)
[2018-09-27 16:55:33,699] {base_task_runner.py:98} INFO - Subtask: File "/usr/local/lib/python2.7/site-packages/airflow/models.py", line 1492, in _run_raw_task
[2018-09-27 16:55:33,701] {base_task_runner.py:98} INFO - Subtask: result = task_copy.execute(context=context)
[2018-09-27 16:55:33,701] {base_task_runner.py:98} INFO - Subtask: File "/usr/local/lib/python2.7/site-packages/airflow/operators/python_operator.py", line 89, in execute
[2018-09-27 16:55:33,702] {base_task_runner.py:98} INFO - Subtask: return_value = self.execute_callable()
[2018-09-27 16:55:33,703] {base_task_runner.py:98} INFO - Subtask: File "/usr/local/lib/python2.7/site-packages/airflow/operators/python_operator.py", line 94, in execute_callable
[2018-09-27 16:55:33,703] {base_task_runner.py:98} INFO - Subtask: return self.python_callable(*self.op_args, **self.op_kwargs)
[2018-09-27 16:55:33,704] {base_task_runner.py:98} INFO - Subtask: File "/home/airflow/gcs/dags/xcom.py", line 22, in push
[2018-09-27 16:55:33,707] {base_task_runner.py:98} INFO - Subtask: kwargs['ti'].xcom_push(key='value from pusher 1', value=value_1)
[2018-09-27 16:55:33,708] {base_task_runner.py:98} INFO - Subtask: KeyError: 'ti'
我们验证了DAG的存在但没有问题,请帮助我们解决此问题。
答案 0 :(得分:6)
将provide_context: True
添加到默认参数。 define **kwargs
需要这样做。
args = {
'owner': 'airflow',
'start_date': airflow.utils.dates.days_ago(2),
'provide_context': True
}
provide_context(布尔)–如果设置为true,Airflow将传递一组关键字参数,这些参数可以在您的函数中使用。这组kwarg与您在jinja模板中可以使用的完全对应。为此,您需要在函数头中定义** kwargs。