我正在尝试使用LSTM
构建文本分类器:
model = Sequential()
model.add(Embedding(vocabulary_dim, 150, input_length=max_length))
model.add(LSTM(150, return_sequences=False))
model.add(Dense(1, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=5, batch_size=128)
其中参数vocabulary_dim
的计算公式为:
temp_list = [element for element in sentence_pad]
vocabulary_dim = len(np.unique(temp_list))
运行model.fit(...)
时出现此错误:
InvalidArgumentError: indices[3,0] = 25501 is not in [0, 19355)
[[Node: embedding_2/Gather = Gather[Tindices=DT_INT32, Tparams=DT_FLOAT, validate_indices=true, _device="/job:localhost/replica:0/task:0/device:CPU:0"](embedding_2/embeddings/read, _arg_embedding_2_input_0_2)]]
Caused by op 'embedding_2/Gather', defined at:
File "C:\Users\Simone\Anaconda3\envs\keras\lib\runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "C:\Users\Simone\Anaconda3\envs\keras\lib\runpy.py", line 85, in _run_code
exec(code, run_globals)
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\ipykernel\__main__.py", line 3, in <module>
app.launch_new_instance()
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\traitlets\config\application.py", line 658, in launch_instance
app.start()
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\ipykernel\kernelapp.py", line 474, in start
ioloop.IOLoop.instance().start()
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\zmq\eventloop\ioloop.py", line 177, in start
super(ZMQIOLoop, self).start()
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\tornado\ioloop.py", line 887, in start
handler_func(fd_obj, events)
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\tornado\stack_context.py", line 275, in null_wrapper
return fn(*args, **kwargs)
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\zmq\eventloop\zmqstream.py", line 440, in _handle_events
self._handle_recv()
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\zmq\eventloop\zmqstream.py", line 472, in _handle_recv
self._run_callback(callback, msg)
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\zmq\eventloop\zmqstream.py", line 414, in _run_callback
callback(*args, **kwargs)
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\tornado\stack_context.py", line 275, in null_wrapper
return fn(*args, **kwargs)
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\ipykernel\kernelbase.py", line 276, in dispatcher
return self.dispatch_shell(stream, msg)
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\ipykernel\kernelbase.py", line 228, in dispatch_shell
handler(stream, idents, msg)
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\ipykernel\kernelbase.py", line 390, in execute_request
user_expressions, allow_stdin)
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\ipykernel\ipkernel.py", line 196, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\ipykernel\zmqshell.py", line 501, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\IPython\core\interactiveshell.py", line 2717, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\IPython\core\interactiveshell.py", line 2821, in run_ast_nodes
if self.run_code(code, result):
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\IPython\core\interactiveshell.py", line 2881, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-14-42e99436b8e4>", line 3, in <module>
model.add(Embedding(dim_vocabolario, 150, input_length=lunghezza_massima_periodo))
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\keras\models.py", line 422, in add
layer(x)
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\keras\engine\topology.py", line 554, in __call__
output = self.call(inputs, **kwargs)
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\keras\layers\embeddings.py", line 119, in call
out = K.gather(self.embeddings, inputs)
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\keras\backend\tensorflow_backend.py", line 966, in gather
return tf.gather(reference, indices)
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\tensorflow\python\ops\array_ops.py", line 2486, in gather
params, indices, validate_indices=validate_indices, name=name)
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 1833, in gather
validate_indices=validate_indices, name=name)
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\tensorflow\python\framework\ops.py", line 2956, in create_op
op_def=op_def)
File "C:\Users\Simone\Anaconda3\envs\keras\lib\site-packages\tensorflow\python\framework\ops.py", line 1470, in __init__
self._traceback = self._graph._extract_stack() # pylint: disable=protected-access
InvalidArgumentError (see above for traceback): indices[3,0] = 25501 is not in [0, 19355)
[[Node: embedding_2/Gather = Gather[Tindices=DT_INT32, Tparams=DT_FLOAT, validate_indices=true, _device="/job:localhost/replica:0/task:0/device:CPU:0"](embedding_2/embeddings/read, _arg_embedding_2_input_0_2)]]
我认为vocabulary_dimension
的计算方式有问题,但我不确定。
答案 0 :(得分:1)
是的,问题出在dir.FullName
的计算中。来自documentation:
input_dim: int>0。词汇量,即最大整数索引+ 1。
在您的情况下,索引中似乎存在间隙,因此长度不对应于最大整数索引。您应该改为:
vocabulary_dim
注意:应该在整个数据集(包括测试集)中计算此词汇量的暗淡程度,以便每个单词都具有唯一的整数索引。
答案 1 :(得分:1)
该错误可能是由于您使用temp_list
映射了单词,而映射应该在set(temp_list)
temp_list = [element for element in sentence_pad]
temp_list = set(temp_list)
vocabulary_dim = len(temp_list)
现在,使用此temp_list
将数据框中的单词映射到其索引,例如,
word2idx = {v:i for i,v in enumerate(temp_list)}
例如,如果您的数据类似
df
words
0 credits
1 pandas
2 good
X_train = df['words'].map(word2idx)