我有一个数据集,其形式为第1列包含治疗名称,其余列包含这些治疗的值,每种治疗有3个重复。为了说明,我使用虹膜数据集创建了模拟数据集,如下所示:
df <- read.table(text = '"Treatment" "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
"treatment_a" 5.1 3.5 1.4 0.2
"treatment_a" 4.9 3 1.4 0.2
"treatment_a" 4.7 3.2 1.3 0.2
"treatment_b" 4.6 3.1 1.5 0.2
"treatment_b" 5 3.6 1.4 0.2
"treatment_b" 5.4 3.9 1.7 0.4
"treatment_c" 4.6 3.4 1.4 0.3
"treatment_c" 5 3.4 1.5 0.2
"treatment_c" 4.4 2.9 1.4 0.2
"treatment_d" 4.9 3.1 1.5 0.1
"treatment_d" 5.4 3.7 1.5 0.2
"treatment_d" 4.8 3.4 1.6 0.2
"treatment_e" 4.8 3 1.4 0.1
"treatment_e" 4.3 3 1.1 0.1
"treatment_e" 5.8 4 1.2 0.2
"treatment_f" 5.7 4.4 1.5 0.4
"treatment_f" 5.4 3.9 1.3 0.4
"treatment_f" 5.1 3.5 1.4 0.3
"treatment_g" 5.7 3.8 1.7 0.3
"treatment_g" 5.1 3.8 1.5 0.3
"treatment_g" 5.4 3.4 1.7 0.2
"treatment_h" 5.1 3.7 1.5 0.4
"treatment_h" 4.6 3.6 1 0.2
"treatment_h" 5.1 3.3 1.7 0.5', header = TRUE)
我想使用R在此数据集上执行pca,以便在绘图上绘制重复处理而不是变量,处理名称也应在绘图上标出。 我在stackoverflow上寻找了类似的问题,但是没有找到与我的问题类似的问题。
答案 0 :(得分:1)
您是否要绘制散点图,其第一和第二主成分分别绘制在x和y轴上?然后,您要对这些点标上治疗方法吗?如果是这样,您可以尝试一下。我正在使用ggplot2
软件包。
我还给锅增添了色彩美感。如果不想,可以随意放下该部分。
df <- read.table(text = '"Treatment" "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
"treatment_a" 5.1 3.5 1.4 0.2
"treatment_a" 4.9 3 1.4 0.2
"treatment_a" 4.7 3.2 1.3 0.2
"treatment_b" 4.6 3.1 1.5 0.2
"treatment_b" 5 3.6 1.4 0.2
"treatment_b" 5.4 3.9 1.7 0.4
"treatment_c" 4.6 3.4 1.4 0.3
"treatment_c" 5 3.4 1.5 0.2
"treatment_c" 4.4 2.9 1.4 0.2
"treatment_d" 4.9 3.1 1.5 0.1
"treatment_d" 5.4 3.7 1.5 0.2
"treatment_d" 4.8 3.4 1.6 0.2
"treatment_e" 4.8 3 1.4 0.1
"treatment_e" 4.3 3 1.1 0.1
"treatment_e" 5.8 4 1.2 0.2
"treatment_f" 5.7 4.4 1.5 0.4
"treatment_f" 5.4 3.9 1.3 0.4
"treatment_f" 5.1 3.5 1.4 0.3
"treatment_g" 5.7 3.8 1.7 0.3
"treatment_g" 5.1 3.8 1.5 0.3
"treatment_g" 5.4 3.4 1.7 0.2
"treatment_h" 5.1 3.7 1.5 0.4
"treatment_h" 4.6 3.6 1 0.2
"treatment_h" 5.1 3.3 1.7 0.5', header = TRUE)
# run principle components, ignore first column
pr <- prcomp(df[, 2:5])
# run predict to get the first and second principle components
pr_pred <- predict(pr)
# put this into a data frame so we can use ggplot
df2 <- data.frame(Treatment = df$Treatment,
pr_pred[, 1:2])
library(ggplot2)
ggplot(data = df2, aes(x = PC1, y = PC2,
colour = Treatment,
label = Treatment)) +
geom_text()
要添加这些类别,我们必须更改类别的数量。我们去三个。希望在您的实际数据集中可以绘制出所需的椭圆。
df_mod <- read.table(text = '"Treatment" "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
"treatment_a" 5.1 3.5 1.4 0.2
"treatment_a" 4.9 3 1.4 0.2
"treatment_a" 4.7 3.2 1.3 0.2
"treatment_b" 4.6 3.1 1.5 0.2
"treatment_b" 5 3.6 1.4 0.2
"treatment_b" 5.4 3.9 1.7 0.4
"treatment_c" 4.6 3.4 1.4 0.3
"treatment_c" 5 3.4 1.5 0.2
"treatment_c" 4.4 2.9 1.4 0.2
"treatment_a" 4.9 3.1 1.5 0.1
"treatment_a" 5.4 3.7 1.5 0.2
"treatment_a" 4.8 3.4 1.6 0.2
"treatment_b" 4.8 3 1.4 0.1
"treatment_b" 4.3 3 1.1 0.1
"treatment_b" 5.8 4 1.2 0.2
"treatment_c" 5.7 4.4 1.5 0.4
"treatment_c" 5.4 3.9 1.3 0.4
"treatment_c" 5.1 3.5 1.4 0.3
"treatment_a" 5.7 3.8 1.7 0.3
"treatment_a" 5.1 3.8 1.5 0.3
"treatment_b" 5.4 3.4 1.7 0.2
"treatment_b" 5.1 3.7 1.5 0.4
"treatment_c" 4.6 3.6 1 0.2
"treatment_c" 5.1 3.3 1.7 0.5', header = TRUE)
pr_mod <- prcomp(df_mod[, 2:5])
pr_pred_mod <- predict(pr_mod)
df2_mod <- data.frame(Treatment = df_mod$Treatment,
pr_pred_mod[, 1:2])
ggplot(data = df2_mod, aes(x = PC1, y = PC2,
colour = Treatment,
label = Treatment)) +
geom_text() +
stat_ellipse(show.legend = FALSE)