我是深度学习的新手。我正在尝试在词嵌入功能方面建立非常基本的LSTM网络。我已经为模型编写了以下代码,但无法运行。
from keras.layers import Dense, LSTM, merge, Input,Concatenate
from keras.layers.recurrent import LSTM
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Flatten
max_sequence_size = 14
classes_num = 2
LSTM_word_1 = LSTM(100, activation='relu',recurrent_dropout = 0.25, dropout = 0.25)
lstm_word_input_1 = Input(shape=(max_sequence_size, 300))
lstm_word_out_1 = LSTM_word_1(lstm_word_input_1)
merged_feature_vectors = Dense(50, activation='sigmoid')(Dropout(0.2)(lstm_word_out_1))
predictions = Dense(classes_num, activation='softmax')(merged_feature_vectors)
my_model = Model(input=[lstm_word_input_1], output=predictions)
print my_model.summary()
我遇到的错误是ValueError: Error when checking input: expected input_1 to have 3 dimensions, but got array with shape (3019, 300)
。在搜索时,我发现人们已经使用Flatten()
来压缩密集层的所有二维特征(3019,300)。但我无法解决此问题。
在解释时,请告诉我尺寸的计算方式。
根据要求:
我的X_training存在尺寸问题,因此,我在下面提供了代码以消除混乱,
def makeFeatureVec(words, model, num_features):
# Function to average all of the word vectors in a given
# paragraph
#
# Pre-initialize an empty numpy array (for speed)
featureVec = np.zeros((num_features,),dtype="float32")
#
nwords = 0.
#
# Index2word is a list that contains the names of the words in
# the model's vocabulary. Convert it to a set, for speed
index2word_set = set(model.wv.index2word)
#
# Loop over each word in the review and, if it is in the model's
# vocaublary, add its feature vector to the total
for word in words:
if word in index2word_set:
nwords = nwords + 1.
featureVec = np.add(featureVec,model[word])
#
# Divide the result by the number of words to get the average
featureVec = np.divide(featureVec,nwords)
return featureVec
我认为下面的代码正在以这种方式初始化二维numpy数组
def getAvgFeatureVecs(reviews, model, num_features):
# Given a set of reviews (each one a list of words), calculate
# the average feature vector for each one and return a 2D numpy array
#
# Initialize a counter
counter = 0.
#
# Preallocate a 2D numpy array, for speed
reviewFeatureVecs = np.zeros((len(reviews),num_features),dtype="float32")
for review in reviews:
if counter%1000. == 0.:
print "Question %d of %d" % (counter, len(reviews))
reviewFeatureVecs[int(counter)] = makeFeatureVec(review, model, \
num_features)
counter = counter + 1.
return reviewFeatureVecs
def getCleanReviews(reviews):
clean_reviews = []
for review in reviews["question"]:
clean_reviews.append( KaggleWord2VecUtility.review_to_wordlist( review, remove_stopwords=True ))
return clean_reviews
我的目标只是对我已有的评论使用gensim预训练模型进行LSTM。
trainDataVecs = getAvgFeatureVecs( getCleanReviews(train), model, num_features )
答案 0 :(得分:0)
您应该尝试在LSTM层之前使用Embedding layer
。另外,由于您已经为3019条注释预训练了300维矢量,因此可以使用此矩阵初始化嵌入层的权重。
inp_layer = Input((maxlen,))
x = Embedding(max_features, embed_size, weights=[trainDataVecs])(x)
x = LSTM(50, dropout=0.1)(x)
在这里,maxlen
是注释的最大长度,max_features
是数据集的唯一单词或词汇量的最大数目,embed_size
是向量的维数,您的情况是300。
请注意trainDataVecs的形状应为(max_features,embed_size),因此,如果您将预先训练的单词向量加载到trainDataVecs
中,则应该可以。