pyinstaller崩溃时生成的exe并给出错误->无法提取_pywrap_tensorflow_internal fopen无效参数

时间:2018-09-26 15:46:13

标签: python tensorflow pyinstaller

我已经使用python创建了一个带有tensorflow的程序,然后我使用pyinstaller构建了一个exe,首先我使用了这一行:

pyinstaller test.py 

然后,因为它给了我模块tensorflow.python._pywrap_tensorflow_internal.pyd的导入错误 我将此文件复制到名为tensorflow \ python的dist \ test \目录的新文件夹中。然后我用这条线重复建筑物:

pyinstaller test.py -F --add-data "C:\path\dist\test\tensorflow\python\tensorflow.python._pywrap_tensorflow_internal.pyd";"C:\path\dist"

现在导入错误消失了,但是程序仍然崩溃并且我遇到了这个错误:

  

C:\ path \ dist \ tensorflow.python._pywrap_tensorflow_internal.pyd无法提取

     

打开:无效的参数

该问题的解决方案是什么?

我正在尝试构建的脚本是这样的:

import pyscreenshot as ImageGrab
from   win32api import GetSystemMetrics
import os
import cv2
import numpy as np
import tensorflow as tf
import sys
import warnings
import h5py
import time

def Condition(data):
    global name
    for ch in data:
        if ch['name'] != name:
            print("data name:",ch['name'])
            name = ch['name']
            UpdateLabels(data, labels)


def GetName(data, name):
    for ch in data:
        name = ch['name']
        return name

def UpdateLabels(data, labels):

    for ch in data:
        if ch['name'] == "ace":
            labels["ace"] += 1
        elif ch['name'] == "king":
            labels["king"] += 1
        elif ch['name'] == "queen":
            labels["queen"] += 1
        elif ch['name'] == "jack":
            labels["jack"] += 1
        elif ch['name'] == "ten":
            labels["ten"] += 1
        elif ch['name'] == "nine":
            labels["nine"] += 1
        elif ch['name'] == "eight":
            labels["eight"] += 1
        elif ch['name'] == "seven":
            labels["seven"] += 1
        elif ch['name'] == "six":
            labels["six"] += 1
        elif ch['name'] == "five":
            labels["five"] += 1
        elif ch['name'] == "four":
            labels["four"] += 1
        elif ch['name'] == "three":
            labels["three"] += 1
        elif ch['name'] == "two":
            labels["two"] += 1
    return labels

def UpdateCounter(data, c):
    for ch in data:
        if ch['name'] == "ace":
            c = c - labels["ace"]
        if ch['name'] == "king":
            c = c - labels["king"]
        if ch['name'] == "queen":
            c = c - labels["queen"]
        if ch['name'] == "jack":
            c = c - labels["jack"]
        if ch['name'] == "ten":
            c = c - labels["ten"]
        if ch['name'] == "six":
            c = c + labels["six"]
        if ch['name'] == "five":
            c = c + labels["five"]
        if ch['name'] == "four":
            c = c + labels["four"]
        if ch['name'] == "three":
            c = c + labels["three"]
        if ch['name'] == "two":
            c = c + labels["two"]
        return c

if __name__ == '__main__':


    sys.path.append("..")
    from utils import label_map_util
    from utils import visualization_utils as vis_util

    MODEL_NAME = 'inference_graph'
    IMAGE_NAME = 'test1.jpg'
    CWD_PATH = os.getcwd()
    PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,'frozen_inference_graph.pb')
    PATH_TO_LABELS = os.path.join(CWD_PATH,'training','labelmap.pbtxt')
    PATH_TO_IMAGE = os.path.join(CWD_PATH,IMAGE_NAME)

    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

    NUM_CLASSES = 13

    label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
    categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
    category_index = label_map_util.create_category_index(categories)
    detection_graph = tf.Graph()

    with detection_graph.as_default():

        od_graph_def = tf.GraphDef()

        with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
            serialized_graph = fid.read()
            od_graph_def.ParseFromString(serialized_graph)
            tf.import_graph_def(od_graph_def, name='')
            sess = tf.Session(graph=detection_graph)

    image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
    detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
    detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
    num_detections = detection_graph.get_tensor_by_name('num_detections:0')

    c = 0
    labels = {"ace" : 0, "king": 0, "queen": 0, "jack": 0, "ten": 0, "nine": 0, "eight": 0,"seven": 0, "six": 0, "five": 0, "four":0, "three": 0, "two": 0}
    name = None

    while True:


        with warnings.catch_warnings():
            warnings.filterwarnings("ignore",category=FutureWarning)

        screenshot=ImageGrab.grab(bbox=(42,42, GetSystemMetrics(0),GetSystemMetrics(1)))
        screenshot.save(IMAGE_NAME)
        time.sleep(1)

        image = cv2.imread(PATH_TO_IMAGE)
        image_expanded = np.expand_dims(image, axis=0)

        (scores, classes, num) = sess.run(
            [detection_scores, detection_classes, num_detections],
            feed_dict={image_tensor: image_expanded})

        data = [category_index.get(value) for index,value in enumerate(classes[0]) if scores[0,index] > 0.98]


        Condition(data)
        print(UpdateCounter(data, c))

0 个答案:

没有答案