我正在编写三角形的软件栅格化。 在下面的示例中,我光栅化了1个全屏三角形,但它仍然很慢...在我的i7上,它以1024x768的分辨率为1个多边形运行约130 FPS。
我可以看到一些优化的空间,但仍然无法达到我希望获得的性能。我想念的是什么,有什么想法可以快速加快速度吗? ...甚至在更多的多边形上,甚至Quake2在奔腾2上的软件渲染中运行速度也更快:/
谢谢您的建议!
这是代码(我将gmtl用于Vectors)
people
这是我使用CPU采样分析时得到的
答案 0 :(得分:0)
我相信我必须能够超过130 FPS。
...甚至Quake2的运行速度也更快
我必须承认,我从OpenGL中获得了灵感-类似于它的几个部分(至少,我认为它如何工作)并且做了一些简化。
我还必须承认我不明白caculateBarycentricWeights()
函数到底有什么用。
但是,我的实现基于以下概念:
光栅化器必须在屏幕空间中工作
3D顶点在栅格化之前必须转换为屏幕空间
内部光栅循环必须尽可能简单-最内部循环中的分支(即if
和复杂函数)肯定会适得其反。
因此,我做了一个新的rasterize()
函数。因此,我认为rasterize()
必须填充水平屏幕线。为此,我按其y
分量对这三个三角形顶点进行了排序。 (请注意,必须事先将顶点转换为屏幕空间。)在常规情况下,这允许将三角形水平切割为两部分:
下面是源代码,但是草图可能有助于使所有插值更易于理解:
要预先将vtcs
转换为屏幕空间,我使用了两个矩阵:
const Mat4x4f matProj(InitScale, 1.0f / Width, 1.0f / Height, 1.0f);
const Mat4x4f matScreen
= Mat4x4f(InitScale, 0.5f * Width, 0.5f * Height, 1.0f)
* Mat4x4f(InitTrans, Vec3f(1.0f, 1.0f, 0.0f));
const Mat4x4f mat = matScreen * matProj /* * matView * matModel */;
其中
matProj
是用于投影模型坐标以裁剪空间的投影矩阵matScreen
负责将剪辑空间转换为屏幕空间。剪辑空间是指在x,y和z方向上可见部分在[-1,1]范围内的空间。
屏幕空间的范围为[0,宽度)和[0,高度],其中我根据OP的要求使用了width = 1024
和height = 768
。
当我创建OpenGL程序时,这是(某种)令人讨厌的传统,我总是从蓝屏开始(因为蓝色是我最喜欢的透明色)。这主要是由于混淆了某些矩阵运算,然后是寻找并修复这些运算而引起的。因此,我试图将栅格化结果可视化,以确保我的基准测试不会过于热情,因为事实上三角形的任何部分都在视线之外,因此被剪掉了。
我认为这是视觉上的证明。为实现此目的,我将光栅化器示例包装到一个简单的Qt应用程序中,其中FBO
数据存储在QImage
中,而该数据又应用到以{{1}显示的QPixmap
}。一旦知道了这一点,我认为通过随时间修改模型视图矩阵来添加某种简单的动画会很好。因此,我得到了以下示例:
QLabel
我使用#include <cstdint>
#include <algorithm>
#include <chrono>
#include <iostream>
#include <vector>
#include "linmath.h"
typedef unsigned uint;
typedef std::uint32_t uint32;
const int Width = 1024, Height = 768;
class FBO {
public:
const int width, height;
private:
std::vector<uint32> _rgba; // pixel buffer
public:
FBO(int width, int height):
width(width), height(height),
_rgba(width * height, 0)
{ }
~FBO() = default;
FBO(const FBO&) = delete;
FBO& operator=(const FBO&) = delete;
void clear(uint32 rgba) { std::fill(_rgba.begin(), _rgba.end(), rgba); }
void set(int x, int y, uint32 rgba)
{
const size_t i = y * width + x;
_rgba[i] = rgba;
}
size_t getI(int y) const { return y * width; }
size_t getI(int x, int y) const { return y * width + x; }
void set(size_t i, uint32 rgba) { _rgba[i] = rgba; }
const std::vector<uint32>& getRGBA() const { return _rgba; }
};
void rasterize(FBO &fbo, const Vec3f vtcs[3], const uint32 rgba)
{
// sort vertices by y coordinates
uint iVtcs[3] = { 0, 1, 2 };
if (vtcs[iVtcs[0]].y > vtcs[iVtcs[1]].y) std::swap(iVtcs[0], iVtcs[1]);
if (vtcs[iVtcs[1]].y > vtcs[iVtcs[2]].y) std::swap(iVtcs[1], iVtcs[2]);
if (vtcs[iVtcs[0]].y > vtcs[iVtcs[1]].y) std::swap(iVtcs[0], iVtcs[1]);
const Vec3f vtcsS[3] = { vtcs[iVtcs[0]], vtcs[iVtcs[1]], vtcs[iVtcs[2]] };
const float yM = vtcs[1].y;
// cut triangle in upper and lower part
const float xT = vtcsS[0].x;
float xML = vtcsS[1].x;
const float f = (yM - vtcsS[0].y) / (vtcsS[2].y - vtcsS[0].y);
float xMR = (1.0f - f) * xT + f * vtcsS[2].x;
if (xML > xMR) std::swap(xML, xMR);
// draw upper part of triangle
if (vtcs[iVtcs[0]].y < yM) {
const float dY = yM - vtcsS[0].y;
for (int y = std::max((int)vtcsS[0].y, 0),
yE = std::min((int)(yM + 0.5f), fbo.height);
y < yE; ++y) {
const float f1 = (yM - y) / dY, f0 = 1.0f - f1;
const float xL = f0 * xT + f1 * xML, xR = f0 * xT + f1 * xMR;
const size_t i = fbo.getI(y);
for (int x = std::max((int)xL, 0),
xE = std::min((int)(xR + 0.5f), fbo.width);
x < xE; ++x) {
fbo.set(i + x, rgba);
}
}
} // else upper edge horizontal
// draw lower part of triangle
if (yM < vtcs[2].y) {
const float xB = vtcsS[2].x;
const float dY = vtcsS[2].y - yM;
for (int y = std::max((int)yM, 0),
yE = std::min((int)(vtcsS[2].y + 0.5f), fbo.height);
y < yE; ++y) {
const float f1 = (y - yM) / dY, f0 = 1.0f - f1;
const float xL = f0 * xML + f1 * xB, xR = f0 * xMR + f1 * xB;
const size_t i = fbo.getI(y);
for (int x = std::max((int)xL, 0),
xE = std::min((int)(xR + 0.5f), fbo.width);
x < xE; ++x) {
fbo.set(i + x, rgba);
}
}
} // else lower edge horizontal
}
template <typename VALUE>
Vec3T<VALUE> transformPoint(const Mat4x4T<VALUE> &mat, const Vec3T<VALUE> &pt)
{
Vec4T<VALUE> pt_ = mat * Vec4T<VALUE>(pt.x, pt.y, pt.z, (VALUE)1);
return pt_.w != (VALUE)0
? Vec3T<VALUE>(pt_.x / pt_.w, pt_.y / pt_.w, pt_.z / pt_.w)
: Vec3T<VALUE>(pt_.x, pt_.y, pt_.z);
}
typedef std::chrono::high_resolution_clock HiResClock;
typedef std::chrono::microseconds MicroSecs;
int mainBench()
{
const Mat4x4f matProj(InitScale, 1.0f / Width, 1.0f / Height, 1.0f);
const Mat4x4f matScreen
= Mat4x4f(InitScale, 0.5f * Width, 0.5f * Height, 1.0f)
* Mat4x4f(InitTrans, Vec3f(1.0f, 1.0f, 0.0f));
const Mat4x4f mat = matScreen * matProj /* * matView * matModel */;
FBO fbo(Width, Height);
HiResClock::time_point start = HiResClock::now();
size_t fps = 0;
for (;;) {
static Vec3f v0 = { -2000.0f, -2000.0, 10.0 };
static Vec3f v1 = { 2000.0f, -2000.0, 10.0 };
static Vec3f v2 = { 0.0f, 2000.0, 10.0 };
const Vec3f vtcs[] = {
transformPoint(mat, v0), transformPoint(mat, v1), transformPoint(mat, v2)
};
rasterize(fbo, vtcs, 0xff0000ff);
++fps;
HiResClock::time_point now = HiResClock::now();
auto timeDiff
= std::chrono::duration_cast<MicroSecs>(now - start).count();
static const long oneSecond = 1000000;
if (timeDiff >= oneSecond) {
std::cout << fps << " " << std::flush;
fps = 0;
start = now;
}
}
}
#include <stack>
#include <QtWidgets>
struct RenderContext {
FBO fbo; // frame buffer object
Mat4x4f matModelView;
Mat4x4f matProj;
RenderContext(int width, int height):
fbo(width, height),
matModelView(InitIdent),
matProj(InitIdent)
{ }
~RenderContext() = default;
};
void render(RenderContext &context)
{
context.fbo.clear(0xffffcc88);
static Vec3f v0 = { -2000.0f, -2000.0, 10.0 };
static Vec3f v1 = { 2000.0f, -2000.0, 10.0 };
static Vec3f v2 = { 0.0f, 2000.0, 10.0 };
#if 0 // test transformations of mainBench()
const Mat4x4f matProj(InitScale, 1.0f / Width, 1.0f / Height, 1.0f);
const Mat4x4f matScreen
= Mat4x4f(InitScale, 0.5f * Width, 0.5f * Height, 1.0f)
* Mat4x4f(InitTrans, Vec3f(1.0f, 1.0f, 0.0f));
const Mat4x4f mat = matScreen * matProj /* * matView * matModel */;
#else // make a simple animation
const Mat4x4f matScreen
= Mat4x4f(InitScale, 0.5f * context.fbo.width, 0.5f * context.fbo.height, 1.0f)
* Mat4x4f(InitTrans, Vec3f(1.0f, 1.0f, 0.0f));
const Mat4x4f mat = matScreen * context.matProj * context.matModelView;
#endif // 0
const Vec3f vtcs[] = {
transformPoint(mat, v0), transformPoint(mat, v1), transformPoint(mat, v2)
};
rasterize(context.fbo, vtcs, 0xff0000ff);
}
int main(int argc, char **argv)
{
// evaluate arguments
const bool gui = argc > 1
&& (strcmp(argv[1], "gui") == 0 || strcmp(argv[1], "-gui") == 0);
// without arguments: start benchmark
if (!gui) return mainBench();
// remove argument "gui"
for (char **arg = argv + 1; *arg; ++arg) arg [0] = arg[1];
// Qt Demo
qDebug() << "Qt Version:" << QT_VERSION_STR;
QApplication app(argc, argv);
RenderContext context(Width, Height);
// setup GUI
QPixmap qPixmapImg(Width, Height);
QLabel qLblImg;
qLblImg.setWindowTitle("Software Rasterizer Demo");
qLblImg.setPixmap(qPixmapImg);
qLblImg.show();
// Qt timer for periodic rendering/animation
QTime qTime(0, 0);
QTimer qTimer;
qTimer.setInterval(50);
// install signal handlers
QObject::connect(&qTimer, &QTimer::timeout,
[&]() {
// simple animation
const float r = 1.0f, t = 0.001f * qTime.elapsed();
context.matModelView
= Mat4x4f(InitTrans, Vec3f(r * sin(t), r * cos(t), 0.0f))
* Mat4x4f(InitScale, 0.0001f, 0.0001f, 0.0001f);
// rendering
render(context);
// transfer FBO to qLblImg
const QImage qImg((uchar*)context.fbo.getRGBA().data(),
Width, Height, QImage::Format_RGBA8888);
qPixmapImg.convertFromImage(qImg);
qLblImg.setPixmap(qPixmapImg);
});
// runtime loop
qTime.start(); qTimer.start();
return app.exec();
}
(不是我以前写的MCVE的左边)代替了gmtl
(我不知道):
linmath.h
在添加我使用以下命令简单编译的Qt代码之前:
#ifndef LIN_MATH_H
#define LIN_MATH_H
#include <iostream>
#include <cassert>
#include <cmath>
double Pi = 3.1415926535897932384626433832795;
template <typename VALUE>
inline VALUE degToRad(VALUE angle)
{
return (VALUE)Pi * angle / (VALUE)180;
}
template <typename VALUE>
inline VALUE radToDeg(VALUE angle)
{
return (VALUE)180 * angle / (VALUE)Pi;
}
template <typename VALUE>
struct Vec2T {
VALUE x, y;
Vec2T() { }
Vec2T(VALUE x, VALUE y): x(x), y(y) { }
};
template <typename VALUE>
VALUE length(const Vec2T<VALUE> &vec)
{
return sqrt(vec.x * vec.x + vec.y * vec.y);
}
template <typename VALUE>
std::ostream& operator<<(std::ostream &out, const Vec2T<VALUE> &v)
{
return out << "( " << v.x << ", " << v.y << " )";
}
typedef Vec2T<float> Vec2f;
typedef Vec2T<double> Vec2;
template <typename VALUE>
struct Vec3T {
VALUE x, y, z;
Vec3T() { }
Vec3T(VALUE x, VALUE y, VALUE z): x(x), y(y), z(z) { }
Vec3T(const Vec2T<VALUE> &xy, VALUE z): x(xy.x), y(xy.y), z(z) { }
explicit operator Vec2T<VALUE>() const { return Vec2T<VALUE>(x, y); }
};
template <typename VALUE>
std::ostream& operator<<(std::ostream &out, const Vec3T<VALUE> &v)
{
return out << "( " << v.x << ", " << v.y << ", " << v.z << " )";
}
typedef Vec3T<float> Vec3f;
typedef Vec3T<double> Vec3;
template <typename VALUE>
struct Vec4T {
VALUE x, y, z, w;
Vec4T() { }
Vec4T(VALUE x, VALUE y, VALUE z, VALUE w): x(x), y(y), z(z), w(w) { }
Vec4T(const Vec2T<VALUE> &xy, VALUE z, VALUE w):
x(xy.x), y(xy.y), z(z), w(w)
{ }
Vec4T(const Vec3T<VALUE> &xyz, VALUE w):
x(xyz.x), y(xyz.y), z(xyz.z), w(w)
{ }
explicit operator Vec2T<VALUE>() const { return Vec2T<VALUE>(x, y); }
explicit operator Vec3T<VALUE>() const { return Vec3T<VALUE>(x, y, z); }
};
template <typename VALUE>
std::ostream& operator<<(std::ostream &out, const Vec4T<VALUE> &v)
{
return out << "( " << v.x << ", " << v.y << ", " << v.z << ", " << v.w << " )";
}
typedef Vec4T<float> Vec4f;
typedef Vec4T<double> Vec4;
enum ArgInitIdent { InitIdent };
enum ArgInitTrans { InitTrans };
enum ArgInitRot { InitRot };
enum ArgInitRotX { InitRotX };
enum ArgInitRotY { InitRotY };
enum ArgInitRotZ { InitRotZ };
enum ArgInitScale { InitScale };
template <typename VALUE>
struct Mat4x4T {
union {
VALUE comp[4 * 4];
struct {
VALUE _00, _01, _02, _03;
VALUE _10, _11, _12, _13;
VALUE _20, _21, _22, _23;
VALUE _30, _31, _32, _33;
};
};
// constructor to build a matrix by elements
Mat4x4T(
VALUE _00, VALUE _01, VALUE _02, VALUE _03,
VALUE _10, VALUE _11, VALUE _12, VALUE _13,
VALUE _20, VALUE _21, VALUE _22, VALUE _23,
VALUE _30, VALUE _31, VALUE _32, VALUE _33):
_00(_00), _01(_01), _02(_02), _03(_03),
_10(_10), _11(_11), _12(_12), _13(_13),
_20(_20), _21(_21), _22(_22), _23(_23),
_30(_30), _31(_31), _32(_32), _33(_33)
{ }
// constructor to build an identity matrix
Mat4x4T(ArgInitIdent):
_00((VALUE)1), _01((VALUE)0), _02((VALUE)0), _03((VALUE)0),
_10((VALUE)0), _11((VALUE)1), _12((VALUE)0), _13((VALUE)0),
_20((VALUE)0), _21((VALUE)0), _22((VALUE)1), _23((VALUE)0),
_30((VALUE)0), _31((VALUE)0), _32((VALUE)0), _33((VALUE)1)
{ }
// constructor to build a matrix for translation
Mat4x4T(ArgInitTrans, const Vec3T<VALUE> &t):
_00((VALUE)1), _01((VALUE)0), _02((VALUE)0), _03((VALUE)t.x),
_10((VALUE)0), _11((VALUE)1), _12((VALUE)0), _13((VALUE)t.y),
_20((VALUE)0), _21((VALUE)0), _22((VALUE)1), _23((VALUE)t.z),
_30((VALUE)0), _31((VALUE)0), _32((VALUE)0), _33((VALUE)1)
{ }
// constructor to build a matrix for rotation about axis
Mat4x4T(ArgInitRot, const Vec3T<VALUE> &axis, VALUE angle):
_03((VALUE)0), _13((VALUE)0), _23((VALUE)0),
_30((VALUE)0), _31((VALUE)0), _32((VALUE)0), _33((VALUE)1)
{
//axis.normalize();
const VALUE sinAngle = sin(angle), cosAngle = cos(angle);
const VALUE xx = axis.x * axis.x, xy = axis.x * axis.y;
const VALUE xz = axis.x * axis.z, yy = axis.y * axis.y;
const VALUE yz = axis.y * axis.z, zz = axis.z * axis.z;
_00 = xx + cosAngle * ((VALUE)1 - xx) /* + sinAngle * 0 */;
_01 = xy - cosAngle * xy - sinAngle * axis.z;
_02 = xz - cosAngle * xz + sinAngle * axis.y;
_10 = xy - cosAngle * xy + sinAngle * axis.z;
_11 = yy + cosAngle * ((VALUE)1 - yy) /* + sinAngle * 0 */;
_12 = yz - cosAngle * yz - sinAngle * axis.x;
_20 = xz - cosAngle * xz - sinAngle * axis.y;
_21 = yz - cosAngle * yz + sinAngle * axis.x;
_22 = zz + cosAngle * ((VALUE)1 - zz) /* + sinAngle * 0 */;
}
// constructor to build a matrix for rotation about x axis
Mat4x4T(ArgInitRotX, VALUE angle):
_00((VALUE)1), _01((VALUE)0), _02((VALUE)0), _03((VALUE)0),
_10((VALUE)0), _11(cos(angle)), _12(-sin(angle)), _13((VALUE)0),
_20((VALUE)0), _21(sin(angle)), _22(cos(angle)), _23((VALUE)0),
_30((VALUE)0), _31((VALUE)0), _32((VALUE)0), _33((VALUE)1)
{ }
// constructor to build a matrix for rotation about y axis
Mat4x4T(ArgInitRotY, VALUE angle):
_00(cos(angle)), _01((VALUE)0), _02(sin(angle)), _03((VALUE)0),
_10((VALUE)0), _11((VALUE)1), _12((VALUE)0), _13((VALUE)0),
_20(-sin(angle)), _21((VALUE)0), _22(cos(angle)), _23((VALUE)0),
_30((VALUE)0), _31((VALUE)0), _32((VALUE)0), _33((VALUE)1)
{ }
// constructor to build a matrix for rotation about z axis
Mat4x4T(ArgInitRotZ, VALUE angle):
_00(cos(angle)), _01(-sin(angle)), _02((VALUE)0), _03((VALUE)0),
_10(sin(angle)), _11(cos(angle)), _12((VALUE)0), _13((VALUE)0),
_20((VALUE)0), _21((VALUE)0), _22((VALUE)1), _23((VALUE)0),
_30((VALUE)0), _31((VALUE)0), _32((VALUE)0), _33((VALUE)1)
{ }
// constructor to build a matrix for scaling
Mat4x4T(ArgInitScale, VALUE sx, VALUE sy, VALUE sz):
_00((VALUE)sx), _01((VALUE)0), _02((VALUE)0), _03((VALUE)0),
_10((VALUE)0), _11((VALUE)sy), _12((VALUE)0), _13((VALUE)0),
_20((VALUE)0), _21((VALUE)0), _22((VALUE)sz), _23((VALUE)0),
_30((VALUE)0), _31((VALUE)0), _32((VALUE)0), _33((VALUE)1)
{ }
// operator to allow access with [][]
double* operator [] (int i)
{
assert(i >= 0 && i < 4);
return comp + 4 * i;
}
// operator to allow access with [][]
const double* operator [] (int i) const
{
assert(i >= 0 && i < 4);
return comp + 4 * i;
}
// multiply matrix with matrix -> matrix
Mat4x4T operator * (const Mat4x4T &mat) const
{
return Mat4x4T(
_00 * mat._00 + _01 * mat._10 + _02 * mat._20 + _03 * mat._30,
_00 * mat._01 + _01 * mat._11 + _02 * mat._21 + _03 * mat._31,
_00 * mat._02 + _01 * mat._12 + _02 * mat._22 + _03 * mat._32,
_00 * mat._03 + _01 * mat._13 + _02 * mat._23 + _03 * mat._33,
_10 * mat._00 + _11 * mat._10 + _12 * mat._20 + _13 * mat._30,
_10 * mat._01 + _11 * mat._11 + _12 * mat._21 + _13 * mat._31,
_10 * mat._02 + _11 * mat._12 + _12 * mat._22 + _13 * mat._32,
_10 * mat._03 + _11 * mat._13 + _12 * mat._23 + _13 * mat._33,
_20 * mat._00 + _21 * mat._10 + _22 * mat._20 + _23 * mat._30,
_20 * mat._01 + _21 * mat._11 + _22 * mat._21 + _23 * mat._31,
_20 * mat._02 + _21 * mat._12 + _22 * mat._22 + _23 * mat._32,
_20 * mat._03 + _21 * mat._13 + _22 * mat._23 + _23 * mat._33,
_30 * mat._00 + _31 * mat._10 + _32 * mat._20 + _33 * mat._30,
_30 * mat._01 + _31 * mat._11 + _32 * mat._21 + _33 * mat._31,
_30 * mat._02 + _31 * mat._12 + _32 * mat._22 + _33 * mat._32,
_30 * mat._03 + _31 * mat._13 + _32 * mat._23 + _33 * mat._33);
}
// multiply matrix with vector -> vector
Vec4T<VALUE> operator * (const Vec4T<VALUE> &vec) const
{
return Vec4T<VALUE>(
_00 * vec.x + _01 * vec.y + _02 * vec.z + _03 * vec.w,
_10 * vec.x + _11 * vec.y + _12 * vec.z + _13 * vec.w,
_20 * vec.x + _21 * vec.y + _22 * vec.z + _23 * vec.w,
_30 * vec.x + _31 * vec.y + _32 * vec.z + _33 * vec.w);
}
};
template <typename VALUE>
std::ostream& operator<<(std::ostream &out, const Mat4x4T<VALUE> &m)
{
return out
<< m._00 << '\t' << m._01 << '\t' << m._02 << '\t' << m._03 << '\n'
<< m._10 << '\t' << m._11 << '\t' << m._12 << '\t' << m._13 << '\n'
<< m._20 << '\t' << m._21 << '\t' << m._22 << '\t' << m._23 << '\n'
<< m._30 << '\t' << m._31 << '\t' << m._32 << '\t' << m._33 << '\n';
}
typedef Mat4x4T<float> Mat4x4f;
typedef Mat4x4T<double> Mat4x4;
// enumeration of rotation axes
enum RotAxis {
RotX, // rotation about x axis
RotY, // rotation about y axis
RotZ // rotation about z axis
};
// enumeration of possible Euler angles
enum EulerAngle {
RotXYX = RotX + 3 * RotY + 9 * RotX, // 0 + 3 + 0 = 3
RotXYZ = RotX + 3 * RotY + 9 * RotZ, // 0 + 3 + 18 = 21
RotXZX = RotX + 3 * RotZ + 9 * RotX, // 0 + 6 + 0 = 6
RotXZY = RotX + 3 * RotZ + 9 * RotY, // 0 + 6 + 9 = 15
RotYXY = RotY + 3 * RotX + 9 * RotY, // 1 + 0 + 9 = 10
RotYXZ = RotY + 3 * RotX + 9 * RotZ, // 1 + 0 + 18 = 19
RotYZX = RotY + 3 * RotZ + 9 * RotX, // 1 + 6 + 0 = 7
RotYZY = RotY + 3 * RotZ + 9 * RotY, // 1 + 6 + 9 = 16
RotZXY = RotZ + 3 * RotX + 9 * RotY, // 2 + 0 + 9 = 11
RotZXZ = RotZ + 3 * RotX + 9 * RotZ, // 2 + 0 + 18 = 20
RotZYX = RotZ + 3 * RotY + 9 * RotX, // 2 + 3 + 0 = 5
RotZYZ = RotZ + 3 * RotY + 9 * RotZ, // 2 + 3 + 18 = 23
RotHPR = RotZXY, // used in OpenGL Performer
RotABC = RotZYX // used in German engineering
};
/* decomposes the combined EULER angle type into the corresponding
* individual EULER angle axis types.
*/
inline void decompose(
EulerAngle type, RotAxis &axis1, RotAxis &axis2, RotAxis &axis3)
{
unsigned type_ = (unsigned)type;
axis1 = (RotAxis)(type_ % 3); type_ /= 3;
axis2 = (RotAxis)(type_ % 3); type_ /= 3;
axis3 = (RotAxis)type_;
}
template <typename VALUE>
Mat4x4T<VALUE> makeEuler(
EulerAngle mode, VALUE rot1, VALUE rot2, VALUE rot3)
{
RotAxis axis1, axis2, axis3;
decompose(mode, axis1, axis2, axis3);
const static VALUE axes[3][3] = {
{ (VALUE)1, (VALUE)0, (VALUE)0 },
{ (VALUE)0, (VALUE)1, (VALUE)0 },
{ (VALUE)0, (VALUE)0, (VALUE)1 }
};
return
Mat4x4T<VALUE>(InitRot,
Vec3T<VALUE>(axes[axis1][0], axes[axis1][1], axes[axis1][2]),
rot1)
* Mat4x4T<VALUE>(InitRot,
Vec3T<VALUE>(axes[axis2][0], axes[axis2][1], axes[axis2][2]),
rot2)
* Mat4x4T<VALUE>(InitRot,
Vec3T<VALUE>(axes[axis3][0], axes[axis3][1], axes[axis3][2]),
rot3);
}
/* decomposes a rotation matrix into EULER angles.
*
* It is necessary that the upper left 3x3 matrix is composed of rotations
* only. Translational parts are not considered.
* Other transformations (e.g. scaling, shearing, projection) may cause
* wrong results.
*/
template <typename VALUE>
void decompose(
const Mat4x4T<VALUE> &mat,
RotAxis axis1, RotAxis axis2, RotAxis axis3,
VALUE &angle1, VALUE &angle2, VALUE &angle3)
{
assert(axis1 != axis2 && axis2 != axis3);
/* This is ported from EulerAngles.h of the Eigen library. */
const int odd = (axis1 + 1) % 3 == axis2 ? 0 : 1;
const int i = axis1;
const int j = (axis1 + 1 + odd) % 3;
const int k = (axis1 + 2 - odd) % 3;
if (axis1 == axis3) {
angle1 = atan2(mat[j][i], mat[k][i]);
if ((odd && angle1 < (VALUE)0) || (!odd && angle1 > (VALUE)0)) {
angle1 = angle1 > (VALUE)0 ? angle1 - (VALUE)Pi : angle1 + (VALUE)Pi;
const VALUE s2 = length(Vec2T<VALUE>(mat[j][i], mat[k][i]));
angle2 = -atan2(s2, mat[i][i]);
} else {
const VALUE s2 = length(Vec2T<VALUE>(mat[j][i], mat[k][i]));
angle2 = atan2(s2, mat[i][i]);
}
const VALUE s1 = sin(angle1);
const VALUE c1 = cos(angle1);
angle3 = atan2(c1 * mat[j][k] - s1 * mat[k][k],
c1 * mat[j][j] - s1 * mat[k][j]);
} else {
angle1 = atan2(mat[j][k], mat[k][k]);
const VALUE c2 = length(Vec2T<VALUE>(mat[i][i], mat[i][j]));
if ((odd && angle1<(VALUE)0) || (!odd && angle1 > (VALUE)0)) {
angle1 = (angle1 > (VALUE)0)
? angle1 - (VALUE)Pi : angle1 + (VALUE)Pi;
angle2 = atan2(-mat[i][k], -c2);
} else angle2 = atan2(-mat[i][k], c2);
const VALUE s1 = sin(angle1);
const VALUE c1 = cos(angle1);
angle3 = atan2(s1 * mat[k][i] - c1 * mat[j][i],
c1 * mat[j][j] - s1 * mat[k][j]);
}
if (!odd) {
angle1 = -angle1; angle2 = -angle2; angle3 = -angle3;
}
}
#endif // LIN_MATH_H
要使用Qt进行编译,我编写了一个Qt项目$ g++ -std=c++11 -o rasterizerSimple rasterizerSimple.cc
:
rasterizerSimple.pro
已在Windows 10的cygwin64上进行了编译和测试:
SOURCES = rasterizerSimple.cc
QT += widgets
Ctrl C
我的笔记本电脑装有Intel i7(当我让程序运行更长的时间时,发出的噪音会更小)。
这看起来还不错-平均每秒3000个三角形。 (如果他的i7速度不比我的慢很多,那么它将超过OP的130 FPS。)
也许,通过进一步的改进,FPS可能会进一步提高。例如,插值可以使用Bresenham's line algorithm来完成,尽管它没有出现在大多数内部循环中。为了优化大多数内部循环,应该以更快的方式填充水平线(尽管我不太确定如何实现此目的)。
要启动Qt可视化,必须使用$ qmake-qt5 rasterizerSimple.pro
$ make
$ ./rasterizerSimple
2724 2921 3015 2781 2800 2805 2859 2783 2931 2871 2902 2983 2995 2882 2940 2878 3007 2993 3066 3067 3118 3144 2849 3084 3020 3005 3030 2991 2999 3065 2941 3123 3119 2905 3135 2938
启动该应用程序:
gui
该示例启发了我一个玩具项目No-GL 3D Renderer,该项目可以在github上找到。