可以说我有以下数据框:
df = pd.DataFrame([['a',1, -1], ['a', 1, -1], ['b', 0, -1], ['c', -1, -1]] ,columns = ['col1', 'col2', 'col3'])
df
col1 col2 col3
0 a 1 -1
1 a 1 -1
2 b 0 -1
3 c -1 -1
现在,我想按列对df分组,对于每个df,分别计算col1
列中值的出现次数。
groupby_df = df.groupby('col1')
for a,b in groupby_df:
print("{0} -> \n{1}".format(a, b['col1'].value_counts().sort_index()))
我得到:
a ->
a 2
Name: col1, dtype: int64
b ->
b 1
Name: col1, dtype: int64
c ->
c 1
Name: col1, dtype: int64
但是我想分别计算出现的次数 ,并且仍然包括所有列值,如下所示:
a ->
a 2
b 0
c 0
Name: col1, dtype: int64
b ->
a 0
b 1
c 0
Name: col1, dtype: int64
c ->
a 0
b 0
c 1
Name: col1, dtype: int64
任何帮助将不胜感激!
答案 0 :(得分:1)
尝试使用.reindex():
import pandas as pd
df = pd.DataFrame([['a',1, -1], ['a', 1, -1], ['b', 0, -1], ['c', -1, -1]] ,columns = ['col1', 'col2', 'col3'])
# Create index using unique values of col1.
uniques = pd.Index(df['col1'].unique())
# Group.
groupby_df = df.groupby('col1')
# Use reindex to assign and autoamtically align the value counts with the index.
for a, b in groupby_df:
print(b['col1'].value_counts().sort_index().reindex(uniques, fill_value = 0))
礼物:
a 2
b 0
c 0
Name: col1, dtype: int64
a 0
b 1
c 0
Name: col1, dtype: int64
a 0
b 0
c 1
Name: col1, dtype: int64