我当时正在用wgan-gp计算损失函数,我想知道我的代码出了什么问题或者是否需要实施其他方法
with tf.GradientTape() as critic_tape:
generated_images = generator(tf.random_normal([16, 100]), training=True)
a = tf.convert_to_tensor(images[:16])
real_output = critic(a, training=True)
generated_output = critic(generated_images, training=True)
with tf.GradientTape() as gtape:
epsilon = tf.random_uniform([], 0, 1)
xhat = epsilon*a + (1-epsilon)*generated_images
dhat = critic(xhat, training=True)
gtape.watch(xhat)
dhat2 = gtape.gradient(dhat, xhat)
slopes = tf.sqrt(tf.reduce_sum(tf.square(dhat2), reduction_indices=[1]))
gradient_penalty = 10*tf.reduce_mean((slopes-1.0)**2)
critic_loss = get_critic_loss(real_output, generated_output)
critic_loss+= gradient_penalty
gradients_of_critic = critic_tape.gradient(critic_loss, critic.variables)
这是错误堆栈,我正在使用tensorflow急切执行,因此我们将不胜感激任何帮助
---------------------------------------------------------------------------
LookupError Traceback (most recent call last)
<ipython-input-512-cbc8ebf905ac> in <module>()
16 critic_loss = get_critic_loss(real_output, generated_output)
17 critic_loss+= gradient_penalty
---> 18 gradients_of_critic = critic_tape.gradient(critic_loss, critic.variables)
19 print(gradients_of_critic)
c:\users\vibhu\anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\eager\backprop.py in gradient(self, target, sources, output_gradients)
856 flat_grad = imperative_grad.imperative_grad(
857 _default_vspace, self._tape, nest.flatten(target), flat_sources,
--> 858 output_gradients=output_gradients)
859
860 if not self._persistent:
c:\users\vibhu\anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\eager\imperative_grad.py in imperative_grad(vspace, tape, target, sources, output_gradients)
61 """
62 return pywrap_tensorflow.TFE_Py_TapeGradient(
---> 63 tape._tape, vspace, target, sources, output_gradients) # pylint: disable=protected-access
c:\users\vibhu\anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\eager\backprop.py in _gradient_function(op_name, attr_tuple, num_inputs, inputs, outputs, out_grads)
110 """
111 mock_op = _MockOp(attr_tuple, inputs, outputs, op_name)
--> 112 grad_fn = ops._gradient_registry.lookup(op_name) # pylint: disable=protected-access
113 if grad_fn is None:
114 return [None] * num_inputs
c:\users\vibhu\anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\framework\registry.py in lookup(self, name)
91 else:
92 raise LookupError(
---> 93 "%s registry has no entry for: %s" % (self._name, name))
LookupError: gradient registry has no entry for: StatefulPartitionedCall
答案 0 :(得分:0)
我遇到了同样的问题,可能与您使用的代码相同。为我的评论者禁用 tf.contrib.eager.defun 解决了我的问题。这当然不是一个好的解决方案,因为您将无法获得加速的defun,但至少可以执行代码。