我有以下DataFrame:
df = pd.DataFrame({"id": [0]*5 + [1]*5,
"time": ['2015-01-01', '2015-01-03', '2015-01-04', '2015-01-08', '2015-01-10', '2015-02-02', '2015-02-04', '2015-02-06', '2015-02-11', '2015-02-13'],
'hit': [0,3,8,2,5, 6,12,0,7,3]})
df.time = df.time.astype('datetime64[ns]')
df = df[['id', 'time', 'hit']]
df
输出:
id time hit
0 0 2015-01-01 0
1 0 2015-01-03 3
2 0 2015-01-04 8
3 0 2015-01-08 2
4 0 2015-01-10 5
5 1 2015-02-02 6
6 1 2015-02-04 12
7 1 2015-02-06 0
8 1 2015-02-11 7
9 1 2015-02-13 3
以及执行重采样的功能:
def subset(df):
'''select first x rows'''
return df.iloc[:14]
def dailyCount(df, member_id, values, time):
'''Transform a time-series df into 7 daily count per group'''
# container for resulting dataframe
ts = pd.DataFrame()
for i in df.member_id.unique():
# prepare a series and upsample it within the same id
chunk = pd.Series(df.loc[df.member_id == i, values])
#print(chunk)
chunk = chunk.resample('1D').asfreq()
# create dataframe and construct some additional columns
chunk = pd.DataFrame(chunk, columns=[values]).reset_index().fillna(0)
chunk[values] = chunk[values].astype(int)
chunk[member_id] = i
chunk['daily_count'] = chunk.groupby(member_id).cumcount() + 1
# accumulate id-wise dataframes 1 by 1 vertically
ts = pd.concat([ts, chunk], axis=0, ignore_index=True)
ts = ts.set_index([member_id, time])
ts = ts.reset_index(level=0).groupby(member_id).apply(subset).drop(member_id, axis=1).reset_index().drop(time, axis=1).set_index([member_id,'daily_count']).unstack().fillna(0)
#ts = ts.reset_index().drop(columns=time).set_index([member_id,'daily_count']).unstack().fillna(0)
ts.columns = pd.Index(['dailyCount_' + e[0] + '_' + str(e[1]) for e in ts.columns.tolist()])
ts = ts.astype(np.int32)#.reset_index()
return ts
输入:
df.rename(columns={'id': 'member_id'}, inplace=True)
df = df.set_index('time')
dailyCount(df, 'member_id', 'hit', 'time')
输出:
dailyCount_hit_1 dailyCount_hit_2 dailyCount_hit_3 dailyCount_hit_4 dailyCount_hit_5 dailyCount_hit_6 dailyCount_hit_7 dailyCount_hit_8 dailyCount_hit_9 dailyCount_hit_10 dailyCount_hit_11 dailyCount_hit_12
member_id
0 0 0 3 8 0 0 0 2 0 5 0 0
1 6 0 12 0 0 0 0 0 0 7 0 3
当我在约180,000行DataFrame上使用此功能时,花了6分钟才能在我的2.3GHz i5 MacBookPro上运行。我知道我的机器运行缓慢,但是我需要在各种数据集上重复使用此功能。在这种情况下,有什么方法可以在不使用For循环的情况下执行相同的转换?
答案 0 :(得分:1)
这是使用pandas.date_range
Index.reindex
和DataFrame.pivot_table
的另一种可能的解决方案:
df.rename(columns={'id': 'member_id'}, inplace=True)
df = df.set_index('time')
members = []
for _, g in df.groupby('member_id'):
dt_idx = pd.date_range(start=g.index.min(), end=g.index.max(), freq='D')
g = g.reindex(dt_idx).reset_index(drop=True)
members.append(g)
resampled_df = pd.concat(members)
resampled_df['member_id'].ffill(inplace=True)
resampled_df['hit'].fillna(0, inplace=True)
resampled_df.index += 1
resampled_df = (resampled_df.pivot_table(values='hit',
index='member_id',
columns=resampled_df.index,
fill_value=0)
.add_prefix('dailyCount_hit_'))
resampled_df.index = resampled_df.index.astype(int)
resampled_df.iloc[:, :14]