def frame_processing(frame):
out_frame = np.zeros((frame.shape[0],frame.shape[1],4),dtype = np.uint8)
b,g,r = cv2.split(frame)
alpha = np.zeros_like(b , dtype=np.uint8)
print(out_frame.shape)
print(b.shape);print(g.shape);print(r.shape);print(alpha.shape)
for i in range(frame.shape[0]):
for j in range(frame.shape[1]):
a = (frame[i,j,0],frame[i,j,1],frame[i,j,2])
b = (225,225,225)
if all(i > j for i, j in zip(a,b)): #all(a>b) :
alpha[i,j] = 0
else:
alpha[i,j] = 255
out_frame[:,:,0] = b
out_frame[:,:,1] = g
out_frame[:,:,2] = r
out_frame[:,:,3] = alpha
#out_frame = cv2.merge((b,g,r,alpha))
return out_frame
想添加一个Alpha通道;尝试cv2.Merge()
和手动堆叠渠道,但失败了。
使用cv2.merge()
时:
error: OpenCV(3.4.2) C:\projects\opencv-
python\opencv\modules\core\src\merge.cpp:458: error: (-215:Assertion failed)
mv[i].size == mv[0].size && mv[i].depth() == depth in function 'cv::merge'
手动添加频道时:
ValueError: could not broadcast input array from shape (3) into shape
(225,225)
答案 0 :(得分:3)
使用isVideoMirrored
查找遮罩,然后将其与cv2.inRange
合并:
np.dstack
要找到特定的颜色,也许您会对以下问题感兴趣:
Choosing the correct upper and lower HSV boundaries for color detection with`cv::inRange` (OpenCV)
答案 1 :(得分:0)
它是一个简单的错字。您正在for循环中更改变量“ b”,它与蓝色通道的变量冲突。将b = (225,225,225)
更改为threshold = (225, 255, 255)
,将zip(a,b)
更改为zip(a, threshold)
应该可以解决此问题。
顺便说一下,您可以使用它来创建您的Alpha通道:
alpha = np.zeros(b.shape, dtype=b.dtype)
如果您需要更高的速度(可以测量时差),也可以像这样填充Alpha通道:
alpha[~((b[:,:]>threshold[0]) & (g[:,:]>threshold[1]) & (r[:,:]>threshold[2]))] = 255
因此您的功能变为:
def frame_processing(frame):
# split channels
b,g,r = cv2.split(frame)
# initialize alpha to zeros
alpha = np.zeros(b.shape, dtype=b.dtype)
# fill alpha values
threshold = (225, 225, 225)
alpha[~((b[:,:]>threshold[0]) & (g[:,:]>threshold[1]) & (r[:,:]>threshold[2]))] = 255
# merge all channels back
out_frame = cv2.merge((b, g, r, alpha))
return out_frame