使用np.polyfit将曲线拟合到数据序列,并使用np.polyval进行评估以绘制为:
我可以通过调用函数f(x)来计算曲线上任意点的y值:
y = f(x, p[0], p[1], p[2], p[3], p[4], p[5])
def f(x, c5, c4, c3, c2, c1, c0): # Polynomial function
return c5 * x**5 + c4 * x**4 + c3 * x**3 + c2 * x**2 + c1 * x + c0
如何计算曲线上某点的切线,以及如何使用该系列中的x和y值对沿曲线的一系列切线进行动画处理?
ps:多亏了James Phillips的解决方案,多项式曲线上的切线绘制如下:
x y
0 21.05
1 21.21
2 20.76
3 20.34
4 20.27
5 20.78
6 20.60
7 20.55
8 19.95
9 19.23
10 19.64
11 19.92
12 19.91
13 19.56
14 19.39
15 19.31
16 19.35
17 18.97
18 18.69
19 19.00
20 19.15
21 19.08
22 18.97
23 19.26
24 19.52
25 19.56
26 19.28
27 19.47
28 19.85
29 19.77
答案 0 :(得分:3)
下面是使用numpy的polyder()自动区分多项式的示例代码,因此您无需手动计算它-在开发过程中更改多项式顺序时非常方便。这将以给定的“ X”值绘制数据,方程式和切线,这足以使您入门。虽然我不知道您选择的动画技术,但我个人将图像序列保存为PNG文件,转换为GIF,然后在zunzun.com网站上使用gifsicle进行动画制作,以创建3D表面图旋转。
import numpy, matplotlib
import matplotlib.pyplot as plt
xData = numpy.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0])
yData = numpy.array([21.05, 21.21, 20.76, 20.34, 20.27, 20.78, 20.60, 20.55, 19.95, 19.23, 19.64, 19.92, 19.91, 19.56, 19.39, 19.31, 19.35, 18.97, 18.69, 19.00, 19.15, 19.08, 18.97, 19.26, 19.52, 19.56, 19.28, 19.47, 19.85, 19.77])
# polynomial curve fit the test data
fittedParameters = numpy.polyfit(xData, yData, 3)
##########################################################
# graphics output section
def ModelAndScatterPlot(graphWidth, graphHeight):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
axes = f.add_subplot(111)
# first the raw data as a scatter plot
axes.plot(xData, yData, 'D')
# create data for the fitted equation plot
xModel = numpy.linspace(min(xData), max(xData))
yModel = numpy.polyval(fittedParameters, xModel)
# now the model as a line plot
axes.plot(xModel, yModel)
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
# polynomial derivative from numpy
deriv = numpy.polyder(fittedParameters)
# for plotting
minX = min(xData)
maxX = max(xData)
# value of derivative (slope) at a specific X value, so
# that a straight line tangent can be plotted at the point
# you might place this code in a loop to animate
pointVal = 15.0 # example X value
y_value_at_point = numpy.polyval(fittedParameters, pointVal)
slope_at_point = numpy.polyval(deriv, pointVal)
ylow = (minX - pointVal) * slope_at_point + y_value_at_point
yhigh = (maxX - pointVal) * slope_at_point + y_value_at_point
# now the tangent as a line plot
axes.plot([minX, maxX], [ylow, yhigh])
plt.show()
plt.close('all') # clean up after using pyplot
graphWidth = 800
graphHeight = 600
ModelAndScatterPlot(graphWidth, graphHeight)