在R或C ++中是否有一种快速的方法来填充(稀疏)矩阵:
A, B, 0, 0, 0
C, A, B, 0, 0
0, C, A, B, 0
0, 0, C, A, B
0, 0, 0, C, A
其中A
,B
,C
是5x5矩阵,0是5x5零矩阵。
实际上,我使用的矩阵是成排的数百到数千行。在R中,我知道可以使用rbind
和cbind
,但这是一个乏味且昂贵的解决方案。
更新:此矩阵的使用方式
让上述矩阵为H
。给定两个向量x
和s
,我需要计算H %*% x + s = y
。
答案 0 :(得分:2)
如何使用此矩阵实际上更为重要。在许多情况下,显式矩阵构造对于随后的计算不是必需的。这个问与答可能与您无关:How to build & store this large lower triangular matrix for matrix-vector multiplication?,但可以很好地说明我的观点。
让上述矩阵为
H
。给定两个向量x
和s
,我需要计算H %*% x + s = y
。
矩阵仅用于矩阵向量乘法吗?我们绝对可以跳过形成这个矩阵的过程,因为乘法只是rbind(B, A, C)
和x
之间的滚动矩阵矢量乘法。
## `nA` is the number of `A`-blocks on the main diagonal of `H`
MatVecMul <- function (A, B, C, nA, x, s) {
## input validation
if (diff(dim(A))) stop("A is not a square matrix")
if (diff(dim(B))) stop("B is not a square matrix")
if (diff(dim(C))) stop("C is not a square matrix")
if (dim(A)[1] != dim(B)[1]) stop("A and B does not have the same dimension")
if (dim(A)[1] != dim(C)[1]) stop("A and C does not have the same dimension")
if (length(x) != nA * M) stop("dimension dismatch between matrix and vector")
if (length(x) %% length(s)) stop("length of 'x' does not divide length of 's'")
## initialization
y <- numeric(length(x))
##########################
# compute `y <- H %*% x` #
##########################
## first block column contains `rbind(A, C)`
M <- dim(A)[1]
ind_x <- 1:M
y[1:(2 * M)] <- rbind(A, C) %*% x[ind_x]
ind_x <- ind_x + M
## middle (nA - 2) block columns contain `rbind(B, A, C)`
BAC <- rbind(B, A, C)
ind_y <- 1:(3 * M)
i <- 0
while (i < (nA - 2)) {
y[ind_y] <- y[ind_y] + BAC %*% x[ind_x]
ind_x <- ind_x + M
ind_y <- ind_y + M
i <- i + 1
}
## final block column contains `rbind(A, C)`
ind_y <- ind_y[1:(2 * M)]
y[ind_y] <- y[ind_y] + rbind(B, A) %*% x[ind_x]
## compute `y + s` and return
y + s
}
这是一个可复制的示例。
set.seed(0)
M <- 5 ## dim of basic block
A <- matrix(runif(M * M), M)
B <- matrix(runif(M * M), M)
C <- matrix(runif(M * M), M)
nA <- 5
x <- runif(25)
s <- runif(25)
y <- MatVecMul(A, B, C, nA, x, s)
要验证上述y
的计算正确,我们需要显式构造H
。有很多构造方法。
方法1:使用对角线(稀疏)矩阵
N <- nA * M ## dimension of the final square matrix
library(Matrix)
## construct 3 block diagonal matrices
H1 <- bdiag(rep.int(list(A), nA))
H2 <- bdiag(rep.int(list(B), nA - 1))
H3 <- bdiag(rep.int(list(C), nA - 1))
## augment H2 and H3, then add them together with H1
H <- H1 +
rbind(cbind(Matrix(0, nrow(H2), M), H2), Matrix(0, M, N)) +
cbind(rbind(Matrix(0, M, ncol(H3)), H3), Matrix(0, N, M))
## verification
range((H %*% x)@x + s - y)
#[1] -8.881784e-16 8.881784e-16
我们看到MatVecMul
是正确的。
方法2:直接填写
此方法基于以下观察结果:
B
-------------
A B
C A B
C A B
C A B
C A
-------------
C
首先构造矩形矩阵,然后在中间将正方形矩阵子集化是很容易的。
BAC <- rbind(B, A, C)
nA <- 5 ## number of basic block
N <- nA * M ## dimension of the final square matrix
NR <- N + 2 * M ## leading dimension of the rectangular matrix
## 1D index for the leading B-A-C block
BAC_ind1D <- c(outer(1:nrow(BAC), seq(from = 0, by = NR, length = M), "+"))
## 1D index for none-zero elements in the rectangular matrix
fill_ind1D <- outer(BAC_ind1D, seq(from = 0, by = M * (NR + 1), length = nA), "+")
## 2D index for none-zero elements in the rectangular matrix
fill_ind2D <- arrayInd(fill_ind1D, c(NR, N))
## construct "dgCMatrix" sparse matrix
library(Matrix)
Hsparse <- sparseMatrix(i = fill_ind2D[, 1], j = fill_ind2D[, 2], x = BAC)
Hsparse <- Hsparse[(M+1):(N+M), ]
## construct dense matrix
Hdense <- matrix(0, NR, N)
Hdense[fill_ind2D] <- BAC
Hdense <- Hdense[(M+1):(N+M), ]
## verification
range((Hsparse %*% x)@x + s - y)
#[1] -8.881784e-16 8.881784e-16
range(base::c(Hdense %*% x) + s - y)
#[1] -8.881784e-16 8.881784e-16
再一次,我们看到MatVecMul
是正确的。
使用Rcpp实现MatVecMul
将R函数MatVecMul
转换为Rcpp函数非常容易。正如您使用过c++一样,我会把这个任务留给您。