我有一个要转换为Python脚本的访问查询:
SELECT
[Functional_Details].Customer_No,
Sum([Functional_Details].[SUM(Incoming_Hours)]) AS [SumOfSUM(Incoming_Hours)],
Sum([Functional_Details].[SUM(Incoming_Minutes)]) AS [SumOfSUM(Incoming_Minutes)],
Sum([Functional_Details].[SUM(Incoming_Seconds)]) AS [SumOfSUM(Incoming_Seconds)],
[Functional_Details].Rate,
[Functional_Details].Customer_Type
FROM [Functional_Details]
WHERE(
(([Functional_Details].User_ID) Not In ("IND"))
AND
(([Functional_Details].Incoming_ID)="Airtel")
AND
(([Functional_Details].Incoming_Category)="Foreign")
AND
(([Functional_Details].Outgoing_ID)="Airtel")
AND
(([Functional_Details].Outgoing_Category)="Foreign")
AND
(([Functional_Details].Current_Operation)="NO")
AND
(([Functional_Details].Active)="NO")
)
GROUP BY [Functional_Details].Customer_No, [Functional_Details].Rate, [Functional_Details].Customer_Type
HAVING ((([Functional_Details].Customer_Type)="Check"));
我在数据框中存储了Functional_Details: df_functional_details
我无法理解如何继续执行python脚本。
到目前为止,我已经尝试过:
df_fd_temp=df_functional_details.copy()
if(df_fd_temp['User_ID'] != 'IND'
and df_fd_temp['Incoming_ID'] == 'Airtel'
and df_fd_temp['Incoming_Category'] == 'Foreign'
and df_fd_temp['Outgoing_ID'] == 'Airtel'
and df_fd_temp['Outgoing_Category'] == 'Foreign'
and df_fd_temp['Current_Operation'] == 'NO'
and df_fd_temp['Active'] == 'NO'):
df_fd_temp.groupby(['Customer_No','Rate','Customer_Type']).groups
df_fd_temp[df_fd_temp['Customer_Type'].str.contains("Check")]
答案 0 :(得分:0)
首先,选择适用条件的行(注意括号和&
代替and
):
df_fd_temp = df_fd_temp[(df_fd_temp['User_ID'] != 'IND') &
(df_fd_temp['Incoming_ID'] == 'Airtel') &
(df_fd_temp['Incoming_Category'] == 'Foreign') &
(df_fd_temp['Outgoing_ID'] == 'Airtel') &
(df_fd_temp['Outgoing_Category'] == 'Foreign') &
(df_fd_temp['Current_Operation'] == 'NO') &
(df_fd_temp['Active'] == 'NO')]
然后,执行分组逻辑:
df_grouped = df_fd_temp.groupby(['Customer_No','Rate','Customer_Type'])
您现在有了一个groupby
对象,可以进一步对其进行操作和过滤:
df_grouped.filter(lambda x: "Check" in x['Customer_Type'])
您可能需要根据实际数据集的外观来调整组过滤。