我想实现一种用于在二十一点中对卡进行计数的软件,使用一些图像识别来自动执行该过程。但是我不知道从哪里开始。 我认为问题可以分为以下步骤:
1-在游戏中从浏览器中获取图像(基本上是Adobe Flash游戏)
2-通过识别图像来处理图像,该图像可以识别所有卡。
3-使用策略Hi-Lo更新计数器
4-在屏幕上显示结果
我如何使用python做到这一点?什么图书馆可以帮助我?对我来说,这是一个全新的领域。我将根据您的建议尝试实施该问题。
编辑1:
Selenium Webdriver可以正常工作,到目前为止,我已经使用这种和平的代码来获取主页的屏幕截图,但是我无法进入游戏,因为我没有钱玩大声笑:
from selenium import webdriver
browser = webdriver.Chrome()
browser.get('https://www.888casino.it/giochi-da-casino/')
browser.save_screenshot('screenie.png')
browser.quit()
但是基本上,我需要用钩住浏览器的东西代替browser.get()
,而不是打开新页面的东西。
然后我需要实现一个for循环,在玩游戏时每秒获取屏幕截图,然后我就可以开始处理这些图像了。
编辑2:
我将尝试TensorFlow API进行图像处理,但是我没有找到用于识别卡片的任何训练模型。因此,我必须创建一个全新的模型,我发现这个tutorial可以帮助我训练自己的对象识别模型。请,如果您知道现有的培训模型,请链接它。
编辑3:
使用Tensorflow,我能够创建自己的对象识别模型,现在我需要在python脚本中使用该模型。现在,我已经使用了此示例脚本,该脚本打开图像并在卡片周围绘制矩形。
import os
import cv2
import numpy as np
import tensorflow as tf
import sys
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
# Import utilites
from utils import label_map_util
from utils import visualization_utils as vis_util
# Name of the directory containing the object detection module we're using
MODEL_NAME = 'inference_graph'
IMAGE_NAME = 'test1.jpg'
# Grab path to current working directory
CWD_PATH = os.getcwd()
# Path to frozen detection graph .pb file, which contains the model that is used
# for object detection.
PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,'frozen_inference_graph.pb')
# Path to label map file
PATH_TO_LABELS = os.path.join(CWD_PATH,'training','labelmap.pbtxt')
# Path to image
PATH_TO_IMAGE = os.path.join(CWD_PATH,IMAGE_NAME)
# Number of classes the object detector can identify
NUM_CLASSES = 13
# Load the label map.
# Label maps map indices to category names, so that when our convolution
# network predicts `5`, we know that this corresponds to `king`.
# Here we use internal utility functions, but anything that returns a
# dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# Load the Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
# Define input and output tensors (i.e. data) for the object detection classifier
# Input tensor is the image
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Output tensors are the detection boxes, scores, and classes
# Each box represents a part of the image where a particular object was detected
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represents level of confidence for each of the objects.
# The score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
# Number of objects detected
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Load image using OpenCV and
# expand image dimensions to have shape: [1, None, None, 3]
# i.e. a single-column array, where each item in the column has the pixel RGB value
image = cv2.imread(PATH_TO_IMAGE)
image_expanded = np.expand_dims(image, axis=0)
# Perform the actual detection by running the model with the image as input
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_expanded})
# Draw the results of the detection (aka 'visulaize the results')
vis_util.visualize_boxes_and_labels_on_image_array(
image,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8,
min_score_thresh=0.80)
# All the results have been drawn on image. Now display the image.
cv2.imshow('Object detector', image)
# Press any key to close the image
cv2.waitKey(0)
# Clean up
cv2.destroyAllWindows()
现在,我需要创建自己的识别卡的脚本,并且每张卡都会更新一个必须在屏幕上显示的计数器。这是最棘手的部分,因为我不知道从哪里开始。我在此步骤中遇到了几个问题,首先,脚本必须能够将离开卡片组的卡片与新卡片区分开,这样,每次拍摄屏幕快照时,它都不会弄乱柜台。其次,计数器应更新为高卡为-1(十张ace),低卡为+1(二至六)和中性卡为0(7-8-9),并且必须在屏幕上可见。
编辑4: 我已经构建了该软件的第一个版本,但是存在一些问题,计数器无法正确更新。这是代码:
import pyscreenshot as ImageGrab
from win32api import GetSystemMetrics
import os
import cv2
import numpy as np
import tensorflow as tf
import sys
import warnings
import h5py
def UpdateCounter(labels, c):
for i in labels:
if labels['ace'] > 0:
c = c - 1
if labels['king'] > 0:
c = c - 1
if labels['queen'] > 0:
c = c - 1
if labels['jack'] > 0:
c = c - 1
if labels['ten'] > 0:
c = c - 1
if labels['six'] > 0:
c = c + 1
if labels['five'] > 0:
c = c + 1
if labels['four'] > 0:
c = c + 1
if labels['three'] > 0:
c = c + 1
if labels['two'] > 0:
c = c + 1
return c
if __name__ == '__main__':
sys.path.append("..")
from utils import label_map_util
from utils import visualization_utils as vis_util
MODEL_NAME = 'inference_graph'
IMAGE_NAME = 'test1.jpg'
CWD_PATH = os.getcwd()
PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,'frozen_inference_graph.pb')
PATH_TO_LABELS = os.path.join(CWD_PATH,'training','labelmap.pbtxt')
PATH_TO_IMAGE = os.path.join(CWD_PATH,IMAGE_NAME)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
NUM_CLASSES = 13
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
c = 0
while True:
labels = {"ace" : 0, "king": 0, "queen": 0, "jack": 0, "ten": 0, "nine": 0, "eight": 0,"seven": 0, "six": 0, "five": 0, "four":0, "three": 0, "two": 0}
with warnings.catch_warnings():
warnings.filterwarnings("ignore",category=FutureWarning)
screenshot=ImageGrab.grab(bbox=(42,42, GetSystemMetrics(0),GetSystemMetrics(1)))
screenshot.save(IMAGE_NAME)
image = cv2.imread(PATH_TO_IMAGE)
image_expanded = np.expand_dims(image, axis=0)
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_expanded})
data = [category_index.get(value) for index,value in enumerate(classes[0]) if scores[0,index] > 0.9]
for ch in data:
if ch['name'] == "ace":
labels["ace"] += 1
elif ch['name'] == "king":
labels["king"] += 1
elif ch['name'] == "queen":
labels["queen"] += 1
elif ch['name'] == "jack":
labels["jack"] += 1
elif ch['name'] == "ten":
labels["ten"] += 1
elif ch['name'] == "nine":
labels["nine"] += 1
elif ch['name'] == "eight":
labels["eight"] += 1
elif ch['name'] == "seven":
labels["seven"] += 1
elif ch['name'] == "six":
labels["six"] += 1
elif ch['name'] == "five":
labels["five"] += 1
elif ch['name'] == "four":
labels["four"] += 1
elif ch['name'] == "three":
labels["three"] += 1
elif ch['name'] == "two":
labels["two"] += 1
print(UpdateCounter(labels, c))
请问我该如何解决?我只需要在识别出新卡时就显示计数器,还需要修复程序获得的不良匹配。
答案 0 :(得分:1)
我相信您可以通过使用硒来实现这一目标。
可能是这样:
from selenium import webdriver
import time
browser = webdriver.Chrome()
browser.get('https://www.888casino.it/giochi-da-casino/')
while True:
browser.save_screenshot('screenie.png')
#do the image processing...
time.sleep(1)
browser.quit()
对于图像处理本身,您将需要识别图像上所需的元素,对于您的卡片,则需要单独处理每个元素。因此,您在这方面有两个步骤。
有一个Tensorflow对象检测API可能会为您提供:https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API
祝你好运!