我想使用TensorFlow / Keras将图片分为两类,自拍照和非自拍照。
我已经将样本收集到两个文件系统文件夹中,每个类别一个。
在使用从https://stackoverflow.com/a/52417770/226958看到的文件系统中加载图片之后,我按照MNIST时尚的官方教程(这也是图片分类问题)实施了以下培训。
不幸的是,我得到一个错误:
1.10.1
Tensor("IteratorGetNext:0", shape=(?, 100, 100, 1), dtype=float32)
Tensor("IteratorGetNext:1", shape=(?,), dtype=int32)
Traceback (most recent call last):
File "run.py", line 50, in <module>
model.fit(images, labels, epochs=1, steps_per_epoch=60000)
File "/home/nico/.local/lib/python2.7/site-packages/tensorflow/python/keras/engine/training.py", line 1278, in fit
validation_split=validation_split)
File "/home/nico/.local/lib/python2.7/site-packages/tensorflow/python/keras/engine/training.py", line 878, in _standardize_user_data
exception_prefix='input')
File "/home/nico/.local/lib/python2.7/site-packages/tensorflow/python/keras/engine/training_utils.py", line 182, in standardize_input_data
'with shape ' + str(data_shape))
ValueError: Error when checking input: expected flatten_input to have 3 dimensions, but got array with shape (None, 100, 100, 1)
这是源代码:
import tensorflow as tf
print(tf.__version__)
out_shape = tf.convert_to_tensor([100, 100])
batch_size = 2
image_paths, labels = ["selfies-data/1", "selfies-data/2"], [1, 2]
epoch_size = len(image_paths)
image_paths = tf.convert_to_tensor(image_paths, dtype=tf.string)
labels = tf.convert_to_tensor(labels)
# The images loading part is from https://stackoverflow.com/a/52417770/226958
dataset = tf.data.Dataset.from_tensor_slices((image_paths, labels))
dataset = dataset.repeat().shuffle(epoch_size)
def map_fn(path, label):
# path/label represent values for a single example
image = tf.image.decode_jpeg(tf.read_file(path))
# some mapping to constant size - be careful with distorting aspec ratios
image = tf.image.resize_images(image, out_shape)
image = tf.image.rgb_to_grayscale(image)
# color normalization - just an example
image = tf.to_float(image) * (2. / 255) - 1
return image, label
# num_parallel_calls > 1 induces intra-batch shuffling
dataset = dataset.map(map_fn, num_parallel_calls=8)
dataset = dataset.batch(batch_size)
dataset = dataset.prefetch(1)
images, labels = dataset.make_one_shot_iterator().get_next()
# All of the following is from https://www.tensorflow.org/tutorials/keras/basic_classification
from tensorflow import keras
model = keras.Sequential([
keras.layers.Flatten(input_shape=(100, 100)),
keras.layers.Dense(128, activation=tf.nn.relu),
keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer=tf.train.AdamOptimizer(),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
print(images)
print(labels)
model.fit(images, labels, epochs=epoch_size, steps_per_epoch=60000)
虽然我已经阅读了类似的问题,但None
却没有任何问题。
我如何才能使Keras适应我的输入,或转换我的输入以使Keras接受它?
答案 0 :(得分:1)
1):图像具有一个通道,因此必须反映在输入shape参数中:
keras.layers.Flatten(input_shape=(100, 100, 1))
2)要使用tf.data
API加载文件,您需要先获取图像文件名及其对应的标签:
image_paths, lbls = ["selfies-data/1", "selfies-data/2"], [0., 1.]
labels = []
file_names = []
for d, l in zip(image_paths, lbls):
# get the list all the images file names
name = [os.path.join(d,f) for f in os.listdir(d)]
file_names.extend(name)
labels.extend([l] * len(name))
file_names = tf.convert_to_tensor(file_names, dtype=tf.string)
labels = tf.convert_to_tensor(labels)
dataset = tf.data.Dataset.from_tensor_slices((file_names, labels))
# the rest is the same
您可能还需要扩展labels
的尺寸以使其具有(?, 1)
的形状(而不是(?,)
)。为此,您可以将以下行放在map_fn
函数中:
labels = tf.expand_dims(labels, axis=-1)
3)如果您有两个班级,那么为什么最后一层有10个单元?这是一个二进制分类问题,因此使最后一层具有sigmoid
激活的一个单元。最后,将损失更改为binary_crossentropy
:
# ...
keras.layers.Dense(1, activation=tf.nn.sigmoid)
])
model.compile(optimizer=tf.train.AdamOptimizer(),
loss='binary_crossentropy',
metrics=['accuracy'])