bazel构建tensorflow与本地下载的tensorflow一起使用

时间:2018-09-21 03:46:26

标签: tensorflow bazel serving

张量流服务构建依赖于大张量流;但我已经成功建立了tensorflow。所以我想用它。 我做这些事情: 我更改了为WORKSPACE(org:https://github.com/tensorflow/serving/blob/master/WORKSPACE)服务的tensorflow

IWebElement el = driver.FindElement(By.XPath(""));
IList<IWebElement> allLinks = el.FindElements(By.TagName("a"));
IWebElement linkYouNeed = allLinks[allLinks.Count- 1];

但是我使用以下命令错误进行构建:

workspace(name = "tf_serving")

# To update TensorFlow to a new revision.
# 1. Update the 'git_commit' args below to include the new git hash.
# 2. Get the sha256 hash of the archive with a command such as...
#    curl -L https://github.com/tensorflow/tensorflow/archive/<git hash>.tar.gz | sha256sum
#    and update the 'sha256' arg with the result.
# 3. Request the new archive to be mirrored on mirror.bazel.build for more
#    reliable downloads.
#load("//tensorflow_serving:repo.bzl", "tensorflow_http_archive")

#tensorflow_http_archive(
#    name = "org_tensorflow",
#    sha256 = "0f4b8375de30c54cc3233bc40e04742dab0ffe007acf8391651c6adb62be89f8",
#    git_commit = "2ea398b12ed18b6c51e09f363021c6aa306c5179",
#)

local_repository(
    name = "org_tensorflow",
    path = "/vagrant/tf/tensorflow/",
)


# TensorFlow depends on "io_bazel_rules_closure" so we need this here.
# Needs to be kept in sync with the same target in TensorFlow's WORKSPACE file.
http_archive(
    name = "io_bazel_rules_closure",
    sha256 = "a38539c5b5c358548e75b44141b4ab637bba7c4dc02b46b1f62a96d6433f56ae",
    strip_prefix = "rules_closure-dbb96841cc0a5fb2664c37822803b06dab20c7d1",
    urls = [
        "https://mirror.bazel.build/github.com/bazelbuild/rules_closure/archive/dbb96841cc0a5fb2664c37822803b06dab20c7d1.tar.gz",
        "https://github.com/bazelbuild/rules_closure/archive/dbb96841cc0a5fb2664c37822803b06dab20c7d1.tar.gz",  # 2018-04-13
    ],
)

# Please add all new TensorFlow Serving dependencies in workspace.bzl.
load("//tensorflow_serving:workspace.bzl", "tf_serving_workspace")

tf_serving_workspace()

# Specify the minimum required bazel version.
load("@org_tensorflow//tensorflow:version_check.bzl", "check_bazel_version_at_least")

check_bazel_version_at_least("0.15.0")

在本地tensorflow上成功构建服务应该具有哪些功能?谢谢!

1 个答案:

答案 0 :(得分:0)

您应该提高docker build ressource CPU和内存。我在笔记本电脑上将4 vcpu和4 Gig ram升级到docker,但是在构建tensorflow服务映像时,您需要使用此选项将Bazzel C编译器的最大内存限制为2048 Meg

https://www.tensorflow.org/serving/docker

docker build --pull --build-arg TF_SERVING_BUILD_OPTIONS="--copt=-mavx \
  --cxxopt=-D_GLIBCXX_USE_CXX11_ABI=0 --local_resources 2048,.5,1.0" -t \
  $USER/tensorflow-serving-devel -f Dockerfile.devel .

还需要将Bazel版本升级到20,才能进行构建。在您的docker文件中

设置Bazel扩充器版本20倒入编译器tensorflow

  

   Set up Bazel augmenter version 20 pour compiler tensorflow
    # Need >= 0.15.0 so bazel compiles work with docker bind mounts.
    ENV BAZEL_VERSION 0.20.0
    WORKDIR /
    RUN mkdir /bazel && \
        cd /bazel && \
        curl -H "User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.133 Safari/537.36" -fSsL -O https://github.com/bazelbuild/bazel/releases/download/$BAZEL_VERSION/bazel-$BAZEL_VERSION-installer-linux-x86_64.sh && \
        curl -H "User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.133 Safari/537.36" -fSsL -o /bazel/LICENSE.txt https://raw.githubusercontent.com/bazelbuild/bazel/master/LICENSE && \
        chmod +x bazel-*.sh && \
        ./bazel-$BAZEL_VERSION-installer-linux-x86_64.sh && \
        cd / && \
        rm -f /bazel/bazel-$BAZEL_VERSION-installer-linux-x86_64.sh

这是整个名为dockerbuild.txt的docker文件和docker build命令

docker build --pull --build-arg TF_SERVING_BUILD_OPTIONS =“-copt = -mavx --cxxopt = -D_GLIBCXX_USE_CXX11_ABI = 0 --local_resources 2048,.5,1.0” -f dockerbuild.txt。

# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
FROM ubuntu:18.04 as base_build

ARG TF_SERVING_VERSION_GIT_BRANCH=master
ARG TF_SERVING_VERSION_GIT_COMMIT=head

LABEL maintainer=gvasudevan@google.com
LABEL tensorflow_serving_github_branchtag=${TF_SERVING_VERSION_GIT_BRANCH}
LABEL tensorflow_serving_github_commit=${TF_SERVING_VERSION_GIT_COMMIT}

RUN apt-get update && apt-get install -y --no-install-recommends \
        automake \
        build-essential \
        ca-certificates \
        curl \
        git \
        libcurl3-dev \
        libfreetype6-dev \
        libpng-dev \
        libtool \
        libzmq3-dev \
        mlocate \
        openjdk-8-jdk\
        openjdk-8-jre-headless \
        pkg-config \
        python-dev \
        software-properties-common \
        swig \
        unzip \
        wget \
        zip \
        zlib1g-dev \
        && \
    apt-get clean && \
    rm -rf /var/lib/apt/lists/*

RUN curl -fSsL -O https://bootstrap.pypa.io/get-pip.py && \
    python get-pip.py && \
    rm get-pip.py

RUN pip --no-cache-dir install \
    grpcio \
	h5py \
    keras_applications \
    keras_preprocessing \
    mock \
    numpy \
	six	  \
	Pillow \ 
	matplotlib \
	opencv-python \ 
	pandas \ 
    requests 


# Set up Bazel augmenter version 20 pour compiler tensorflow
# Need >= 0.15.0 so bazel compiles work with docker bind mounts.
ENV BAZEL_VERSION 0.20.0
WORKDIR /
RUN mkdir /bazel && \
    cd /bazel && \
    curl -H "User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.133 Safari/537.36" -fSsL -O https://github.com/bazelbuild/bazel/releases/download/$BAZEL_VERSION/bazel-$BAZEL_VERSION-installer-linux-x86_64.sh && \
    curl -H "User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.133 Safari/537.36" -fSsL -o /bazel/LICENSE.txt https://raw.githubusercontent.com/bazelbuild/bazel/master/LICENSE && \
    chmod +x bazel-*.sh && \
    ./bazel-$BAZEL_VERSION-installer-linux-x86_64.sh && \
    cd / && \
    rm -f /bazel/bazel-$BAZEL_VERSION-installer-linux-x86_64.sh

# Download TF Serving sources (optionally at specific commit).
WORKDIR /tensorflow-serving
RUN git clone --branch=${TF_SERVING_VERSION_GIT_BRANCH} https://github.com/tensorflow/serving . && \
    git remote add upstream https://github.com/tensorflow/serving.git && \
    if [ "${TF_SERVING_VERSION_GIT_COMMIT}" != "head" ]; then git checkout ${TF_SERVING_VERSION_GIT_COMMIT} ; fi


FROM base_build as binary_build
# Build, and install TensorFlow Serving
ARG TF_SERVING_BUILD_OPTIONS="--config=nativeopt"
RUN echo "Building with build options: ${TF_SERVING_BUILD_OPTIONS}"
ARG TF_SERVING_BAZEL_OPTIONS=""
RUN echo "Building with Bazel options: ${TF_SERVING_BAZEL_OPTIONS}"

RUN bazel build --color=yes --curses=yes \
    ${TF_SERVING_BAZEL_OPTIONS} \
    --verbose_failures \
    --output_filter=DONT_MATCH_ANYTHING \
    ${TF_SERVING_BUILD_OPTIONS} \
    tensorflow_serving/model_servers:tensorflow_model_server && \
    cp bazel-bin/tensorflow_serving/model_servers/tensorflow_model_server \
    /usr/local/bin/

# Build and install TensorFlow Serving API
RUN bazel build --color=yes --curses=yes \
    ${TF_SERVING_BAZEL_OPTIONS} \
    --verbose_failures \
    --output_filter=DONT_MATCH_ANYTHING \
    ${TF_SERVING_BUILD_OPTIONS} \
    tensorflow_serving/tools/pip_package:build_pip_package && \
    bazel-bin/tensorflow_serving/tools/pip_package/build_pip_package \
    /tmp/pip && \
    pip --no-cache-dir install --upgrade \
    /tmp/pip/tensorflow_serving_api-*.whl && \
    rm -rf /tmp/pip

FROM binary_build as clean_build
# Clean up Bazel cache when done.
RUN bazel clean --expunge --color=yes && \
    rm -rf /root/.cache
CMD ["/bin/bash"]