使用GGally::ggpairs()
创建图矩阵后,我想存储各个散点图以备后用。
这是我当前的代码:
# load necessary package
library(GGally) # loads `ggplot2`
library(magrittr) # allows for the use of `%>%`
# create a matrix of plots
mtcars %>%
na.omit() %>%
ggpairs(columns = 1:7)
# how do I automate this process?
P1 <- ggplot(aes(x = disp, y = hp)) +
geom_point()
P2 <- ggplot(aes(x = drat, y = hp)) +
geom_point()
P3 <- ggplot(aes(x = hp, y = qsec)) +
geom_point()
我收到一条错误消息,提示数据必须是数据帧。我尝试使用na.omit()
从.
管道中指定数据,但收到了相同的结果。
任何建议都值得赞赏!
答案 0 :(得分:2)
我将所有单独的ggplot(...)
调用浓缩为一个自定义函数:ScatterPlot()
。
然后,我创建了另一个自定义函数ManyScatterPlots()
-使用purrr::map()
-为x轴上df
中每个特定列和y上每个列存储单独的散点图-列表中的轴。此过程对df
中的每一列重复一次。
ManyScatterPlots()
的结果是一个列表列表,其中每个单独的列表都包含许多散点图。我已经标记了列表列表和各个图,以便以后更轻松地查找要查找的内容。
# load necessary package -----
library(tidyverse)
# create a function that makes one scatter plot
ScatterPlot <- function(df, x, y) {
# Input:
# df: a data frame
# x: a column from df in the form of a character vector
# y: a column from df in the form of a character vector
#
# Output:
# a ggplot2 plot
require(ggplot2)
ggplot(data = df, aes(x = get(x), y = get(y))) +
geom_point() +
xlab(x) +
ylab(y) +
labs(title = paste0(y, " as explained by ", x))
}
# create a function that plots one ScatterPlot() for every possible column combination -------
ManyScatterPlots <- function(df) {
# Input:
# df: a data frame
#
# Output:
# a list of ggplot2 plots from ScatterPlot()
require(magrittr)
require(purrr)
# for each column in df
# create an individual scatter plot for that column on the x-axis
# and every column on the y-axis
colnames(df) %>%
map(.f = function(i)
map(.x = colnames(df), .f = function(j)
ScatterPlot(df = df, x = i, y = j)) %>%
# to help identify the individual plots for that particular column
# label the plots inside the list
purrr::set_names(nm = paste0(colnames(df)
, " as explained by "
, i))) %>%
# to help identify the list of plots for each particular column
# label the plots inside the list
purrr::set_names(nm = colnames(df))
}
# use ManyScatterPlots() -----
many.plots <- ManyScatterPlots(df = mtcars)
# view results ---
names(many.plots) # a list of lists
map(.x = many.plots, names) # a list of individual scatter plots
many.plots$disp$`hp as explained by disp`
many.plots$drat$`hp as explained by drat`
many.plots$hp$`qsec as explained by hp`
# end of script #