获取一个N维数组的所有索引作为列表

时间:2018-09-20 15:31:52

标签: python arrays numpy element indices

是否有一种方法可以在Python中以快速有效的方式获取N维数组中所有索引的列表或数组?

例如,图像我们具有以下数组:

import numpy as np

test = np.zeros((4,4))

array([[0., 0., 0., 0.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.]])

我想获得所有元素索引,如下所示:

indices = [ [0,0],[0,1],[0,2] ... [3,2],[3,3] ]

5 个答案:

答案 0 :(得分:3)

使用np.indices进行一些调整:

np.indices(test.shape).reshape(2, -1).T

array([[0, 0],  
       [0, 1],  
       [0, 2],  
       [0, 3],  
       [1, 0],  
       [1, 1],  
       [1, 2],  
       [1, 3],  
       [2, 0],  
       [2, 1],  
       [2, 2],  
       [2, 3],  
       [3, 0],  
       [3, 1],  
       [3, 2],  
       [3, 3]])

答案 1 :(得分:1)

如果您可以使用列表理解

test = np.zeros((4,4))
indices = [[i, j] for i in range(test.shape[0]) for j in range(test.shape[1])]
print (indices)

[[0, 0], [0, 1], [0, 2], [0, 3], [1, 0], [1, 1], [1, 2], [1, 3], [2, 0], [2, 1], [2, 2], [2, 3], [3, 0], [3, 1], [3, 2], [3, 3]]

答案 2 :(得分:1)

我建议使用1,然后使用test,以与您的np.ones_like数组相同的形状来制作np.where数组:

>>> np.stack(np.where(np.ones_like(test))).T
# Or np.dstack(np.where(np.ones_like(test)))
array([[0, 0],
       [0, 1],
       [0, 2],
       [0, 3],
       [1, 0],
       [1, 1],
       [1, 2],
       [1, 3],
       [2, 0],
       [2, 1],
       [2, 2],
       [2, 3],
       [3, 0],
       [3, 1],
       [3, 2],
       [3, 3]])

答案 3 :(得分:1)

只需枚举即可:

test = [[0., 0., 0., 0.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.]]

indices = [[i, j] for i, row in enumerate(test) for j, col in enumerate(row)]
print(indices)

>>> [[0, 0], [0, 1], [0, 2], [0, 3], [1, 0], [1, 1], [1, 2], [1, 3], [2, 0], [2, 1], [2, 2], [2, 3], [3, 0], [3, 1], [3, 2], [3, 3], [4, 0], [4, 1], [4, 2], [4, 3]]

答案 4 :(得分:0)

您可以尝试itertools.product

>>> from itertools import product
>>> 
>>> [list(i) for i in product(range(4), range(4))]
[[0, 0], [0, 1], [0, 2], [0, 3], [1, 0], [1, 1], [1, 2], [1, 3], [2, 0], [2, 1], [2, 2], [2, 3], [3, 0], [3, 1], [3, 2], [3, 3]]