根据闪亮的输入向数据框添加一行,保存结果,然后重新开始

时间:2018-09-20 13:35:51

标签: r shiny flexdashboard

我创建了一个玩具示例,以展示我试图在闪亮的Flexdashboard中创建的基本工作流程。

首先运行此部分,与仪表板分开。它将创建初始的长数据集,我们将在每次提交时将其添加到其中。

df <- data.frame(id = c(1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 6, 7),
                 question = c("Do you like red",
                              "Do you like red",
                              "Do you like red",
                              "Do you like red",
                              "Do you like orange",
                              "Do you like orange",
                              "Do you like orange",
                              "Do you like yellow",
                              "Do you like yellow",
                              "Do you like green",
                              "Do you like blue",
                              "Do you like indigo",
                              "Do you like violet"),
                 rater = c(1, 2, 3, NA, 1, 2, NA, 1, NA, NA, NA, NA, NA),
                 answer = c("yes", "no", "yes", NA, 
                            "yes", "no", NA, 
                            "yes", NA, 
                            NA, 
                            NA,
                            NA,
                            NA)
)
write.csv(df, file="df.csv", row.names = FALSE)

在这里,我们有7个问题,一些评估者给出了一些答案。

#   id           question rater answer
#1   1    Do you like red     1    yes
#2   1    Do you like red     2     no
#3   1    Do you like red     3    yes
#4   1    Do you like red    NA   <NA>
#5   2 Do you like orange     1    yes
#6   2 Do you like orange     2     no
#7   2 Do you like orange    NA   <NA>
#8   3 Do you like yellow     1    yes
#9   3 Do you like yellow    NA   <NA>
#10  4  Do you like green    NA   <NA>
#11  5   Do you like blue    NA   <NA>
#12  6 Do you like indigo    NA   <NA>
#13  7 Do you like violet    NA   <NA>

这就是我要在应用程序中完成的工作:

  1. 加载数据
  2. 当前的评分者(在此示例中为硬编码为raterID==1)尚未回答。
  3. 通过selectInput()收集答案。
  4. 在原始df中添加一行数据
  5. 首先提出下一个未回答的问题评分者。
  6. 将数据行添加到df
  7. 重复

我可以通过第4步。下一个问题出现在UI中,但是数据没有保存。

Flexdashboard:

---
title: "Untitled"
output: 
  flexdashboard::flex_dashboard:
    orientation: columns
    vertical_layout: fill
runtime: shiny
---

```{r setup, include=FALSE}
# load packages
  library(flexdashboard)
  library(tidyverse)
  library(shiny)
  set.seed(1)

# run separate script to generate df and save to csv

# load data
  df <- read.csv("df.csv", stringsAsFactors = FALSE)

# assign a fixed rater ID for this example
  raterID <- 1

# initial processing ----------------------------------------------------------

# identify which questions in df rater already answered
  done <- 
  df %>%
    filter(rater==raterID)

# remove these questions and pick one of the remaining to present to the rater
  toAnswer <- 
  df %>%
    filter(!(id %in% done$id)) %>%
    sample_n(1)
```

Column
-----------------------------------------------------------------------

```{r}
# create an object for the selected question
  output$textq <- renderText(as.character(toAnswer$question))

# ui with the question and a selectInput
  mainPanel(
    textOutput("textq"),
    br(),
    br(),
    selectInput("answer", "Select:", 
                choices = c("yes", "no")),
    actionButton("submit", "Submit", width = '200px')
  )

# create dataframe with 1 row containing selected question, rater, and answer
  dat <- reactive({

    req(input$answer)

    data.frame(id = toAnswer$id, 
               question = toAnswer$question,
               rater = raterID,
               answer = input$answer
               )
    })

# submit data
  observeEvent(input$submit, {

  # add new row to df
    df <- 
    df %>%
      bind_rows(dat())

    write.csv(df, file="df.csv", row.names = FALSE)

  # start over with initial processing
  # identify which questions in df rater already answered
    done <- 
    df %>%
      filter(rater==raterID)

  # remove these questions and pick one of the remaining to present to the rater
    toAnswer <- 
    df %>%
      filter(!(id %in% done$id)) %>%
      sample_n(1)

  # present new question
    output$textq <- renderText(as.character(toAnswer$question))

  # reset input
    updateSelectInput(session, "answer", "Select:", 
                      choices = c("yes", "no"))

  })
```

1 个答案:

答案 0 :(得分:0)

一种解决方案是使用import numpy as np import matplotlib.pyplot as plt np.random.seed(123) data=np.random.rand(100).reshape(10,10) fig,ax=plt.subplots(figsize=(15,12)) im = ax.imshow(data, vmin=0, vmax=1,cmap='Blues') 。我写了这种方法here,用代码here回购。