我在Tensorflow中实现了以下示例:
import tensorflow as tf
import numpy as np
def loss_function(values, a, b):
N = values.shape[0]
i = tf.constant(0)
values_array = tf.get_variable(
"values", values.shape, initializer=tf.constant_initializer(values))
result = tf.constant(0, dtype=tf.float32)
def body1(i):
op2 = tf.assign(values_array[i, 0],
a + b) # Here is where it should be updated. The value being assigned is actually calculated from variable a and b.
with tf.control_dependencies([op2]):
return tf.identity(i + 1)
def condition1(i): return tf.less(i, N)
i = tf.while_loop(condition1, body1, [i])
with tf.control_dependencies([i]):
op1 = tf.assign(values_array[0, 0],
999.0) # Here is where it should be updated
# The final cost is calculated based on the entire values_array
with tf.control_dependencies([op1]):
result = result + tf.reduce_mean(values_array)
return tf.identity(result)
# The parameters we want to calculate in the end
a = tf.Variable(tf.random_uniform([1], 0, 700), name='a')
b = tf.Variable(tf.random_uniform([1], -700, 700), name='b')
values = np.ones([2, 4], dtype=np.float32)
# cost function
cost_function = loss_function(values, a, b)
# training algorithm
optimizer = tf.train.MomentumOptimizer(
0.1, momentum=0.9).minimize(cost_function)
# initializing the variables
init = tf.global_variables_initializer()
# starting the session session
sess = tf.Session()
sess.run(init)
training_cost = sess.run([cost_function])
_ = sess.run([optimizer])
print tf.get_collection(
tf.GraphKeys.GLOBAL_VARIABLES, scope="values")[0].eval(session=sess)
总的来说,我想要的是cost函数根据输入的numpy 2D数组以及参数a和b计算一个临时2D数组。然后,根据临时2D阵列计算最终成本。但是,它会引发Exception has occurred: UnimplementedError
UnimplementedError()
异常。
有帮助吗?
谢谢!
答案 0 :(得分:2)
我知道了。它抛出UnimplementedError (see above for traceback): sliced l-value shape [] does not match r-value shape [1]. Automatic broadcasting not yet implemented.
。因此,将op2 = tf.assign(values_array[i, 0], a + b)
更改为op2 = tf.assign(values_array[i, 0], (a + b)[0])
将解决此问题。