您是stackoverflow的好人,
我有一个问题,似乎无法解决。
df1如下:
Group item Quarter price quantity
1 A 2017Q3 0.10 1000
1 A 2017Q4 0.11 1000
1 A 2018Q1 0.11 1000
1 A 2018Q2 0.12 1000
1 A 2018Q3 0.11 1000
所需结果是一个新数据框,其名称为df2,并带有附加列。
Group item Quarter price quantity savings/lost
1 A 2017Q3 0.10 1000 0.00
1 A 2017Q4 0.11 1000 0.00
1 A 2018Q1 0.11 1000 0.00
1 A 2018Q2 0.12 1000 0.00
1 A 2018Q3 0.11 1000 10.00
1 A 2018Q4 0.13 1000 -20.00
本质上,我想逐行浏览,查看季度并查找去年 进行类似的季度计算(本季度的价格-上一季度的价格*数量)。如果没有上一季度的数据,则在最后一列。
为了完整说明,这里有更多的组和项目,甚至还有更多季度,例如2016Q1、2017Q1、2018Q1,尽管我只需要比较前一年。宿舍为字符串格式。
任何帮助将不胜感激。 谢谢!
答案 0 :(得分:0)
下面的代码假定您的列Quarter
已排序并且没有丢失的四分之一。
您可以尝试以下代码:
# Input dataframe
Group item Quarter price quantity
0 1 A 2017Q3 0.10 1000
1 1 A 2017Q4 0.11 1000
2 1 A 2018Q1 0.11 1000
3 1 A 2018Q2 0.12 1000
4 1 A 2018Q3 0.11 1000
5 1 A 2018Q4 0.13 1000
# Code to generate your new column 'savings/lost'
df['savings/lost'] = df['price'] * df['quantity'] - df['price'].shift(4) * df['quantity'].shift(4)
# Output dataframe
Group item Quarter price quantity savings/lost
0 1 A 2017Q3 0.10 1000 NaN
1 1 A 2017Q4 0.11 1000 NaN
2 1 A 2018Q1 0.11 1000 NaN
3 1 A 2018Q2 0.12 1000 NaN
4 1 A 2018Q3 0.11 1000 10.0
5 1 A 2018Q4 0.13 1000 20.0
希望这对您有所帮助。
更新
我已更新代码以处理两件事,首先对Quarter
进行排序,然后对遗失的Quarter
场景进行处理。对于基于列的分组,您可以参考pandas.DataFrame.groupby和本网站中已经回答的许多pd.groupby
相关问题。
#Input dataframe
Group item Quarter price quantity
0 1 A 2014Q3 0.10 100
1 1 A 2017Q2 0.16 800
2 1 A 2017Q3 0.17 700
3 1 A 2015Q4 0.13 400
4 1 A 2016Q1 0.14 500
5 1 A 2014Q4 0.11 200
6 1 A 2015Q2 0.12 300
7 1 A 2016Q4 0.15 600
8 1 A 2018Q1 0.18 600
9 1 A 2018Q2 0.19 500
#Code to do the operations
df.index = pd.PeriodIndex(df.Quarter, freq='Q')
df.sort_index(inplace=True)
df2 = df.reset_index(drop=True)
df2['Profit'] = (df.price * df.quantity) - (df.reindex(df.index - 4).price * df.reindex(df.index - 4).quantity).values
df2['Profit'] = np.where(np.in1d(df.index - 4, df.index.values),
df2.Profit, ((df.price * df.quantity) - (df.price.shift(1) * df.quantity.shift(1))))
df2.Profit.fillna(0, inplace=True)
#Output dataframe
Group item Quarter price quantity Profit
0 1 A 2014Q3 0.10 100 0.0
1 1 A 2014Q4 0.11 200 12.0
2 1 A 2015Q2 0.12 300 14.0
3 1 A 2015Q4 0.13 400 0.0
4 1 A 2016Q1 0.14 500 18.0
5 1 A 2016Q4 0.15 600 0.0
6 1 A 2017Q2 0.16 800 38.0
7 1 A 2017Q3 0.17 700 -9.0
8 1 A 2018Q1 0.18 600 -11.0
9 1 A 2018Q2 0.19 500 0.0
我希望这是解决此处所述问题的方法。