我遇到了R图(概率密度和散布图,请参见下面的示例)的问题,其中R没有以规则的周期性方式绘制一些数据。
这很难描述,因此希望这些图片对您有所帮助。研究这个问题有些困难,因为任何“丢失数据”或“图丢失”的术语,即使带有“定期”术语,也会返回关于缺失数据的插补或可视化的问题。如果有人对问题标题有更好的主意,也请提出建议。如果某些代码在我的系统上产生了问题,则显示以下信息:
d2<-structure(list(height = c(151.765, 139.7, 136.525, 156.845, 145.415, 163.83,
149.225, 168.91, 147.955, 165.1, 154.305, 151.13, 144.78, 149.9, 150.495,
163.195, 157.48, 143.9418, 161.29, 156.21, 146.4, 148.59, 147.32, 147.955,
161.925, 146.05, 146.05, 152.7048, 142.875, 142.875, 147.955, 160.655, 151.765,
162.8648, 171.45, 147.32, 147.955, 154.305, 143.51, 146.7, 157.48, 165.735,
152.4, 141.605, 158.8, 155.575, 164.465, 151.765, 161.29, 154.305, 145.415,
145.415, 152.4, 163.83, 144.145, 153.67, 142.875, 167.005, 158.4198, 165.735,
149.86, 154.94, 160.9598, 161.925, 147.955, 159.385, 148.59, 136.525, 158.115,
144.78, 156.845, 179.07, 170.18, 146.05, 147.32, 162.56, 152.4, 160.02, 149.86,
142.875, 167.005, 159.385, 154.94, 162.56, 152.4, 170.18, 146.05, 159.385,
151.13, 160.655, 169.545, 158.75, 149.86, 153.035, 161.925, 162.56, 149.225,
163.195, 161.925, 145.415, 163.195, 151.13, 150.495, 170.815, 157.48, 152.4,
147.32, 145.415, 157.48, 154.305, 167.005, 142.875, 152.4, 160, 159.385, 149.86,
160.655, 160.655, 149.225, 140.97, 154.94, 141.605, 160.02, 150.1648, 155.575,
156.21, 153.035, 167.005, 149.86, 147.955, 159.385, 161.925, 155.575, 159.385,
146.685, 172.72, 166.37, 141.605, 151.765, 156.845, 148.59, 157.48, 149.86,
147.955, 153.035, 160.655, 149.225, 138.43, 162.56, 149.225, 158.75, 149.86,
158.115, 156.21, 148.59, 143.51, 154.305, 157.48, 157.48, 154.305, 168.275,
145.415, 149.225, 154.94, 162.56, 156.845, 161.0106, 144.78, 143.51, 149.225,
149.86, 165.735, 144.145, 157.48, 154.305, 163.83, 156.21, 144.145, 162.56,
146.05, 154.94, 144.78, 146.685, 152.4, 163.83, 165.735, 156.21, 152.4, 140.335,
163.195, 151.13, 171.1198, 149.86, 163.83, 141.605, 149.225, 146.05, 161.29,
162.56, 145.415, 170.815, 159.385, 159.4, 153.67, 160.02, 150.495, 149.225,
142.875, 142.113, 147.32, 162.56, 164.465, 160.02, 153.67, 167.005, 151.13,
153.035, 139.065, 152.4, 154.94, 147.955, 144.145, 155.575, 150.495, 155.575,
154.305, 157.48, 168.91, 150.495, 160.02, 167.64, 144.145, 145.415, 160.02,
164.465, 153.035, 149.225, 160.02, 149.225, 153.67, 150.495, 151.765, 158.115,
149.225, 151.765, 154.94, 161.29, 148.59, 160.655, 157.48, 167.005, 157.48,
152.4, 152.4, 161.925, 152.4, 159.385, 142.24, 168.91, 160.02, 158.115, 152.4,
155.575, 154.305, 156.845, 156.21, 168.275, 147.955, 157.48, 160.7, 161.29,
150.495, 163.195, 148.59, 148.59, 161.925, 153.67, 151.13, 163.83, 153.035,
151.765, 156.21, 140.335, 158.75, 142.875, 151.9428, 161.29, 160.9852, 144.78,
160.02, 160.9852, 165.989, 157.988, 154.94, 160.655, 147.32, 146.7, 147.32,
172.9994, 158.115, 147.32, 165.989, 149.86, 161.925, 163.83, 160.02, 154.94,
152.4, 146.05, 151.9936, 151.765, 144.78, 160.655, 151.13, 153.67, 147.32,
139.7, 157.48, 154.94, 143.51, 158.115, 147.32, 160.02, 165.1, 154.94, 153.67,
141.605, 163.83, 161.29, 154.9, 161.3, 170.18, 149.86, 160.655, 154.94, 166.37,
148.2852, 151.765, 148.59, 153.67, 146.685, 154.94, 156.21, 160.655, 146.05,
156.21, 152.4, 162.56, 142.875, 162.56, 156.21, 158.75), weight = c(47.8256065,
36.4858065, 31.864838, 53.0419145, 41.276872, 62.992589, 38.2434755, 55.4799715,
34.869885, 54.487739, 49.89512, 41.220173, 36.0322145, 47.7, 33.849303,
48.5626935, 42.3258035, 38.3568735, 48.987936, 42.7226965, 35.493574,
37.9032815, 35.4652245, 40.312989, 55.111428, 37.5063885, 38.498621, 46.606578,
38.838815, 35.5786225, 47.400364, 47.8823055, 49.4131785, 49.384829, 56.5572525,
39.12231, 49.89512, 41.2485225, 38.55532, 42.4, 44.6504625, 58.5984165,
46.719976, 44.22522, 50.9, 54.317642, 45.8978405, 48.024053, 52.219779,
47.62716, 45.642695, 42.410852, 36.4858065, 55.9335635, 37.194544, 48.307548,
37.3362915, 47.173568, 47.286966, 57.549485, 37.931631, 47.2019175, 43.204638,
50.2636635, 39.3774555, 50.689, 39.4341545, 36.28736, 46.266384, 42.2691045,
47.62716, 55.7067675, 48.5626935, 42.807745, 35.0683315, 56.755699, 51.255896,
47.230267, 40.936678, 32.715323, 57.0675435, 42.977842, 39.9444455, 45.9545395,
41.106775, 47.5988105, 37.5063885, 45.019006, 42.2691045, 54.8562825, 53.523856,
52.1914295, 42.410852, 49.5832755, 41.730464, 56.018612, 42.1557065, 53.0986135,
50.235314, 42.52425, 49.101334, 38.498621, 49.8100715, 59.760746, 47.9390045,
39.292407, 36.8826995, 42.127357, 44.565414, 47.853956, 55.1964765, 32.998818,
40.879979, 51.2, 49.044635, 53.4388075, 54.090846, 55.3665735, 42.240755,
40.936678, 49.6966735, 44.338618, 45.9545395, 41.95726, 51.482692, 44.111822,
32.205032, 56.755699, 52.673371, 36.4858065, 48.8461885, 56.9541455, 42.0990075,
50.178615, 46.549879, 61.80191, 48.987936, 31.524644, 35.2951275, 45.642695,
43.885026, 45.5576465, 39.008912, 41.163474, 45.245802, 53.637254, 52.3048275,
39.0939605, 45.699394, 40.3980375, 51.482692, 38.668718, 39.235708, 44.338618,
39.519203, 31.071052, 46.776675, 40.6248335, 50.178615, 41.276872, 54.6,
44.9906565, 35.8054185, 45.2174525, 48.1091015, 45.6710445, 48.420946,
41.1918235, 38.4135725, 42.127357, 38.2434755, 48.3358975, 38.9238635,
40.029494, 50.2069645, 54.2892925, 45.6, 39.4341545, 43.204638, 31.864838,
45.4442485, 38.045029, 36.0889135, 40.879979, 47.910655, 47.7122085, 46.379782,
41.163474, 36.5992045, 48.137451, 36.7126025, 56.5572525, 38.6970675,
47.4854125, 36.2023115, 41.276872, 44.7638605, 50.4337605, 55.281525, 37.931631,
58.456669, 44.4236665, 44.4, 44.565414, 44.622113, 40.483086, 44.0834725,
34.416293, 32.772022, 35.947166, 49.5549, 53.183662, 37.081146, 40.5114355,
50.6038575, 43.9700745, 49.89, 33.5941575, 43.8566765, 48.137451, 42.751046,
33.906002, 39.7176495, 35.947166, 50.915702, 45.756093, 49.214732, 58.8252125,
43.4597835, 51.9646335, 50.688906, 34.246196, 39.3774555, 59.5622995, 52.16308,
39.972795, 43.941725, 54.601137, 45.075705, 41.333571, 41.900561, 42.524,
43.147939, 40.82328, 42.864444, 46.209685, 47.853956, 42.52425, 48.5059945,
45.869491, 52.900167, 47.570461, 43.544832, 43.431434, 53.2120115, 44.678812,
47.2019175, 31.6663915, 56.4438545, 55.791816, 47.4854125, 45.1607535,
45.529297, 48.874538, 46.5782285, 43.885026, 56.0469615, 40.086193, 50.802304,
46.3, 49.3564795, 44.111822, 51.0291, 40.766581, 37.5630875, 51.59609,
44.8205595, 43.4030845, 46.719976, 39.5475525, 34.7848365, 39.292407,
37.4496895, 48.6760915, 35.606972, 43.714929, 48.19415, 50.972401, 43.998424,
48.19415, 46.6916265, 56.415505, 48.591043, 48.2224995, 47.4854125, 35.550273,
36.6, 48.9595865, 51.255896, 46.5215295, 36.967748, 48.647742, 38.045029,
47.286966, 55.394923, 54.204244, 48.477645, 43.0628905, 34.189497, 49.951819,
44.338618, 33.45241, 47.286966, 46.1246365, 47.400364, 40.8516295, 50.348712,
45.132404, 42.240755, 41.6454155, 45.2174525, 51.255896, 49.271431, 51.199197,
43.8566765, 35.5219235, 42.88542, 46.776675, 41.8722115, 38.2, 43.3, 53.637254,
42.977842, 39.7743485, 43.3463855, 52.673371, 38.441922, 42.807745, 35.890467,
44.22522, 38.0733785, 44.111822, 44.0267735, 47.8823055, 39.405805, 41.050076,
40.82328, 47.0318205, 34.246196, 52.16308, 54.0624965, 52.5316235), age = c(63,
63, 65, 41, 51, 35, 32, 27, 19, 54, 47, 66, 73, 20, 65.3, 36, 44, 31, 39, 29,
56, 45, 19, 29, 30, 24, 35, 33, 27, 32, 36, 24, 30, 24, 52, 42, 19, 55, 43, 20,
18, 42, 44, 60, 20, 37, 50, 50, 31, 25, 23, 52, 79.3, 35, 27, 38, 39, 30, 24,
51, 46, 22, 29, 38, 30, 45, 47, 79, 45, 54, 31, 23, 41, 23, 36, 30, 34, 44, 43,
73.3, 38, 43, 33, 35, 29, 58, 53, 51, 48, 29, 41, 81.75, 35, 46, 29, 42, 27, 22,
43, 53, 43, 41, 50, 33, 62, 49, 22, 29, 33, 34, 42, 40, 27, 25, 29, 45, 26, 45,
45, 85.5999999999999, 26, 24, 57, 22, 24, 21, 79, 50, 40, 64, 32, 38.7, 26, 63,
62, 22, 41, 19, 74, 41, 33, 53, 18, 37, 61, 44, 35, 23, 55, 53, 59, 57, 35, 29,
62, 18, 51, 19, 42, 25, 41, 37, 82, 28, 50, 43, 31, 67, 39, 18, 48, 30, 64, 72,
68, 44, 43, 34, 62, 44, 31, 29, 62, 67, 57, 32, 24, 77, 62, 67, 70, 37, 58, 35,
30, 26, 21, 41, 46, 49, 28, 83, 54, 54, 68, 68, 56, 57, 22, 40, 19, 41,
75.9000000000001, 73.9000000000001, 49, 26, 88, 68, 33, 26, 56, 34, 74, 69, 50,
44, 18, 41, 27, 38, 57, 64.5, 42, 24, 71, 49.5, 33, 28, 47, 27, 55,
83.4000000000001, 63, 52, 49, 31, 35, 35, 24, 41, 32, 43, 63, 21, 55, 38, 28,
36, 38, 48, 45, 38, 21, 50, 41, 30, 21, 38, 19, 31, 21, 50, 39, 44, 36, 36, 18,
58, 58, 33, 21.5, 26, 22, 28, 42, 21, 19, 48, 46, 25, 51, 25, 28, 26, 54, 66,
20, 25, 38, 51, 48, 27, 22, 60, 43, 27, 30, 29, 23, 30, 41, 42, 43, 35, 75.5,
64, 38, 24.2, 26, 19, 43, 38, 23, 49, 41, 23, 43, 21, 24, 20, 20, 34, 29, 65,
46, 43, 39, 43, 70, 26, 48, 44, 33, 41, 37.4, 53, 49, 27, 31, 31, 21, 68), male
= c(1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L,
0L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L,
1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L,
1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L,
0L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L,
0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L,
1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L,
0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L,
0L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L,
0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L,
0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L,
0L, 0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L,
1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L,
0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 1L,
1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L,
0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L)), .Names = c("height",
"weight", "age", "male"), row.names = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 22L, 23L, 26L, 27L, 28L, 32L, 33L, 34L,
35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 50L, 51L, 52L, 53L, 57L,
58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L, 66L, 67L, 68L, 69L, 70L, 73L, 74L, 76L,
77L, 79L, 80L, 83L, 84L, 85L, 86L, 88L, 89L, 90L, 91L, 92L, 93L, 94L, 96L, 97L,
98L, 100L, 102L, 103L, 104L, 105L, 106L, 107L, 108L, 112L, 113L, 117L, 118L,
119L, 120L, 121L, 122L, 123L, 125L, 126L, 128L, 129L, 130L, 133L, 134L, 135L,
136L, 137L, 138L, 140L, 142L, 143L, 146L, 147L, 150L, 151L, 154L, 155L, 156L,
158L, 159L, 160L, 161L, 162L, 163L, 165L, 166L, 167L, 168L, 169L, 170L, 173L,
174L, 175L, 176L, 177L, 178L, 179L, 180L, 181L, 182L, 183L, 184L, 185L, 190L,
191L, 192L, 193L, 194L, 195L, 197L, 198L, 199L, 202L, 204L, 205L, 206L, 207L,
208L, 209L, 210L, 211L, 212L, 214L, 215L, 216L, 218L, 219L, 223L, 224L, 225L,
226L, 228L, 229L, 230L, 231L, 233L, 234L, 235L, 236L, 237L, 238L, 239L, 242L,
244L, 245L, 247L, 248L, 250L, 251L, 252L, 253L, 254L, 255L, 256L, 258L, 259L,
260L, 261L, 262L, 263L, 265L, 267L, 268L, 269L, 270L, 272L, 274L, 275L, 276L,
277L, 278L, 279L, 281L, 282L, 283L, 284L, 285L, 286L, 287L, 288L, 289L, 293L,
294L, 295L, 296L, 297L, 300L, 303L, 304L, 305L, 306L, 309L, 310L, 311L, 313L,
314L, 315L, 316L, 317L, 319L, 320L, 321L, 322L, 323L, 330L, 336L, 337L, 340L,
341L, 342L, 343L, 346L, 347L, 350L, 351L, 352L, 353L, 357L, 358L, 366L, 367L,
372L, 374L, 375L, 380L, 383L, 386L, 387L, 388L, 389L, 393L, 397L, 398L, 400L,
403L, 406L, 410L, 411L, 412L, 413L, 414L, 415L, 417L, 418L, 419L, 420L, 422L,
423L, 424L, 425L, 427L, 428L, 430L, 431L, 434L, 436L, 437L, 438L, 439L, 442L,
443L, 444L, 445L, 446L, 447L, 448L, 451L, 452L, 454L, 458L, 460L, 461L, 462L,
464L, 465L, 469L, 470L, 473L, 474L, 477L, 478L, 479L, 480L, 482L, 483L, 485L,
486L, 489L, 491L, 492L, 494L, 496L, 498L, 499L, 500L, 501L, 502L, 503L, 506L,
507L, 510L, 511L, 515L, 516L, 517L, 519L, 524L, 525L, 529L, 530L, 533L, 534L,
535L, 538L, 541L, 542L, 544L), class = "data.frame")
mu.list <- seq( from=140, to=160 , length.out=200 )
sigma.list <- seq( from=4 , to=9 , length.out=200 )
post <- expand.grid( mu=mu.list , sigma=sigma.list )
mu.list <- seq( from=140, to=160 , length.out=200 )
sigma.list <- seq( from=4 , to=9 , length.out=200 )
post <- expand.grid( mu=mu.list , sigma=sigma.list )
post$LL <- sapply( 1:nrow(post) , function(i) sum( dnorm(
d2$height ,
mean=post$mu[i] ,
sd=post$sigma[i] ,
log=TRUE ) ) )
post$prod <- post$LL + dnorm( post$mu , 178 , 20 , TRUE ) +
dunif( post$sigma , 0 , 50 , TRUE )
post$prob <- exp( post$prod - max(post$prod) )
sample.rows <- sample( 1:nrow(post) , size=1e4 , replace=TRUE , prob=post$prob )
sample.mu <- post$mu[ sample.rows ]
sample.sigma <- post$sigma[ sample.rows ]
但是当我绘制此图形时,R并未以周期性间隔绘制某些点:
plot(sample.mu)
但是绘制另一个向量没有问题 情节(sample.sigma)
我使用Rcmdr复制了它,因此似乎不是特定于Rstudio(我的普通IDE)。导致此问题的vector sample.mu
是什么?另外,如果有人对这个问题的标题有更好的主意,请提出建议。预先感谢您的帮助。
sessionInfo()对我的输出是:
R版本3.4.4(2018-03-15)平台:x86_64-pc-linux-gnu(64位) 运行于:Linux Mint 18.3
Matrix产品:默认BLAS:/usr/lib/openblas-base/libblas.so.3 LAPACK:/usr/lib/libopenblasp-r0.2.18.so
语言环境:[1] LC_CTYPE = en_US.UTF-8 LC_NUMERIC = C
3 LC_TIME = zh_CN.UTF-8 LC_COLLATE = zh_CN.UTF-8 5 LC_MONETARY = zh_CN.UTF-8 LC_MESSAGES = zh_CN.UTF-8 [7] LC_PAPER = zh_CN.UTF-8 LC_NAME = C [9] LC_ADDRESS = C LC_TELEPHONE = C [11] LC_MEASUREMENT = zh_CN.UTF-8 LC_IDENTIFICATION = C附带的基本软件包:[1]个并行统计信息图形grDevices utils数据集[7]基础方法
其他附加软件包:[1] rethinking_1.59 rstan_2.17.3
StanHeaders_2.17.2 4 ggplot2_3.0.0通过名称空间(未附加)加载:[1] Rcpp_0.12.18
rstudioapi_0.6 magrittr_1.5 4绑定器_0.1.1
MASS_7.3-50 munsell_0.5.0 [7] colorspace_1.3-2
点阵_0.20-35 R6_2.2.0 [10] rlang_0.2.2
plyr_1.8.4 dplyr_0.7.4 [13] tools_3.4.4
grid_3.4.4 gtable_0.2.0 [16] loo_2.0.0
coda_0.19-1 withr_2.1.2 [19] matrixStats_0.54.0 yaml_2.2.0 lazyeval_0.2.1 [22]断言_0.2.0
tibble_1.4.2 crayon_1.3.4 [25] bindrcpp_0.2.2
gridExtra_2.3 inline_0.3.15 [28]胶水_1.3.0
编辑器_3.4.4支柱_1.3.0 [31]比例_1.0.0
stats4_3.4.4 mvtnorm_1.0-8 [34] pkgconfig_2.0.2
答案 0 :(得分:0)
您看到的图有很多原因,它们都与您生成和采样数据的方式有关。
首先,mu.list
和sigma.list
都由两个列表的随机样本组成,并且长度均为200。您正在从此扩展列表中采样行(通过expand.grid()
),但是因为expand.grid()
产生的单个行的概率和列表的顺序中,您将为每个列表提取不同数量的唯一值。
> length(unique(sample.mu))
[1] 32
> length(unique(sample.sigma))
[1] 82
您会看到为什么对被选择的概率绘制post$mu
和post$sigma
的原因:
> plot(post$prod, post$mu)
> plot(post$prod, post$sigma)
这将产生此图
如您所见,post$mu
的右侧曲率(更有可能被采样)比post$sigma
的曲率强。因此,与mu相比,您获得的sigma唯一值更多。由于mu.list
中的原始网格,因此在您的绘图中可以看到较低的mu唯一值数量。由于sigma的唯一值数量较多,您会看到圆的重复绘制,因此网格“消失了”。
换句话说:没有遗漏任何点,并且绘图符合预期。