使用Scikit-Learn的管道来组合变压器和估计器

时间:2018-09-19 05:42:15

标签: python scikit-learn jupyter-notebook pipeline

我尝试使用Scikit-Learn的Pipeline函数来组织我们的转换器和估计器,并且在构建将one_hot_transformer与LinearRegression()估计器结合在一起的管道时遇到问题。连接以下设备具有挑战性

from sklearn.preprocessing import OneHotEncoder
cat_feats = np.array([[1,10],[2,20],[3,10],[4,20],[3,10],[2,20],[1,10]])
OneHotEncoder(sparse=False).fit_transform(cat_feats)
one_hot_transformer = OneHotEncoder(sparse=False).fit_transform(X,y)

from sklearn.pipeline import Pipeline
linear_est = Pipeline([one_hot_transformer], LinearRegression())
linear_est.fit(X,y)
predicted = linear_est.predict(X)
grader.score('intro_ml__linear_model', linear_est.predict)

0 个答案:

没有答案