这是我的CSV:
languages, origin, other_test1, other_test2
"[{'name': 'French', 'vowel_count': 3}, {'name': 'Dutch', 'vowel_count': 4}, {'name': 'English', 'vowel_count': 5}]",Germanic,ABC,DEF
我想将CSV的语言列转换为以下输出:
Language_name ,Language_vowel_count, origin, other.test1, other.test2
French, 3, Germanic, ABC, DEF
Dutch, 4, Germanic, ABC, DEF
English, 5, Germanic, ABC, DEF
我尝试过的代码:
from itertools import chain
a = df['languages'].str.findall("'(.*?)'").astype(np.object)
lens = a.str.len()
df = pd.DataFrame({
'origin' : df['origin'].repeat(lens),
'other_test1' : df['other_test1'].repeat(lens),
'other_test2' : df['other_test2'].repeat(lens),
'name' : list(chain.from_iterable(a.tolist())),
'vowel_count' : list(chain.from_iterable(a.tolist())),
})
df
但是它没有给我预期的输出。
答案 0 :(得分:2)
您可以使用嵌套列表推导来解压缩数据,并使用ast.literal_eval
将JSON字符串转换为python字典。
import ast
>>> pd.DataFrame(
[[languages.get('name'), languages.get('vowel_count'), row['origin'], row['other_test1'], row['other_test2']]
for idx, row in df.iterrows()
for languages in ast.literal_eval(row['languages'])],
columns=['Language_name', 'Language_vowel_count', 'origin', 'other.test1', 'other.test2'])
Language_name Language_vowel_count origin other.test1 other.test2
0 French 3 Germanic ABC DEF
1 Dutch 4 Germanic ABC DEF
2 English 5 Germanic ABC DEF
不使用iterrows
的另一种方法将解压缩的语言与基本数据连接起来:
languages = df['languages'].apply(lambda x: ast.literal_eval(x))
df_lang = pd.DataFrame(
[(lang.get('name'), lang.get('vowel_count'))
for language in languages
for lang in language])
df_new = pd.concat([
df_lang,
df.iloc[:, 1:].reindex(df.index.repeat([len(x) for x in languages])).reset_index(drop=True)], axis=1)
df_new.columns = ['Language_name', 'Language_vowel_count', 'origin', 'other.test1', 'other.test2']
答案 1 :(得分:1)
import re
import pandas as pd
import json
csv = """"[{'name': 'French', 'vowel_count': 3}, {'name': 'Dutch', 'vowel_count': 4}, {'name': 'English', 'vowel_count': 5}]",Germanic,ABC,DEF"""
csv = re.split('(?![^)(]*\([^)(]*?\)\)),(?![^\[]*\])',csv)
df = pd.DataFrame(json.loads(csv[0].replace("'",'"')[1:-1]))
df['Origin']=csv[1]
df['other.test1']=csv[2]
df['other.test2']=csv[3]
df