我正在尝试在更大的tf.keras培训管道中使用经过冻结的,经过预训练的DeepLabv3模型,但是一直难以弄清如何将其用作tf.keras模型。我正在尝试使用tf.keras,因为在多个前向传递中间,使用feed_dict(我知道使用冻结图的唯一方法)会降低速度。以下代码中引用的deeplab模型是在常规keras(与tf.contrib.keras相反)中构建的
from keras import backend as K
# Create, compile and train model...
frozen_graph = freeze_session(K.get_session(),
output_names=[out.op.name for out in deeplab.outputs])
tf.train.write_graph(frozen_graph, "./", "my_model.pb", as_text=False)
graph = load_graph("my_model.pb")
# We can verify that we can access the list of operations in the graph
for op in graph.get_operations():
print(op.name)
# prefix/Placeholder/inputs_placeholder
# ...
# prefix/Accuracy/predictions
# We access the input and output nodes
x = graph.get_tensor_by_name("prefix/input_1:0")
y = graph.get_tensor_by_name("prefix/bilinear_upsampling_2/ResizeBilinear:0")
# We launch a Session
with tf.Session(graph=graph) as sess:
print(graph)
model2 = models.Model(inputs=x,outputs=y)
model2.summary()
我得到一个错误
ValueError: Input tensors to a Model must come from `tf.layers.Input`. Received: Tensor("prefix/input_1:0", shape=(?, 512, 512, 3), dtype=float32) (missing previous layer metadata).
我觉得我已经看到其他人用输入层替换输入张量来欺骗tf.keras来构建图形,但是几个小时后,我感到卡住了。任何帮助将不胜感激!
答案 0 :(得分:0)
您可以从其config
重新创建模型对象。在https://keras.io/models/about-keras-models/处参见from_config
方法。
该配置由save_model/load_model
functions存储和加载回。我对freeze_session
不熟悉。