这是一个测试数据框。我想利用EmpID和MgrID之间的关系在新列中进一步映射MgrID的管理器。
Test_df = pd.DataFrame({'EmpID':['1','2','3','4','5','6','7','8','9','10'],
'MgrID':['4','4','4','6','8','8','10','10','10','12']})
Test_df
如果我为初始关系创建字典,那么我将能够创建链的第一个链接,但是我深信需要遍历每个新列来创建一个新的链接。
ID_Dict = {'1':'4',
'2':'4',
'3':'4',
'4':'6',
'5':'8',
'6':'8',
'7':'10',
'8':'10',
'9':'10',
'10':'12'}
Test_df['MgrID_L2'] = Test_df['MgrID'].map(ID_Dict)
Test_df
最有效的方法是什么? 谢谢!
答案 0 :(得分:1)
这是一种带有简单while循环的方法。请注意,我将MgrID
的名称更改为MgrID_1
Test_df = pd.DataFrame({'EmpID':['1','2','3','4','5','6','7','8','9','10'],
'MgrID_1':['4','4','4','6','8','8','10','10','10','12']})
d = Test_df.set_index('EmpID').MgrID_1.to_dict()
s = 2
while s:
Test_df['MgrID_'+str(s)] = Test_df['MgrID_'+str(s-1)].map(d)
if Test_df['MgrID_'+str(s)].isnull().all():
Test_df = Test_df.drop(columns='MgrID_'+str(s))
s = 0
else:
s+=1
输入:Test_df
EmpID MgrID_1 MgrID_2 MgrID_3 MgrID_4 MgrID_5
0 1 4 6 8 10 12
1 2 4 6 8 10 12
2 3 4 6 8 10 12
3 4 6 8 10 12 NaN
4 5 8 10 12 NaN NaN
5 6 8 10 12 NaN NaN
6 7 10 12 NaN NaN NaN
7 8 10 12 NaN NaN NaN
8 9 10 12 NaN NaN NaN
9 10 12 NaN NaN NaN NaN